FINAL REMEDIAL INVESTIGATION REPORT

Havertown PCP Site
Haverford Township
Delaware County, Pennsylvania

Volume 2, Chapters 5 - 10

DER Agreement Number ME - 86110 REWAI Project Number 86021

 $\mathbf{B}\mathbf{y}$

R. E. WRIGHT ASSOCIATES, INC. 3240 Schoolhouse Road Middletown, PA 17057

AR300 | 40

September 1988

FINAL REMEDIAL INVESTIGATION REPORT

Havertown PCP Site Haverford Township Delaware County, Pennsylvania

Volume 2, Chapters 5 - 10

DER Agreement Number ME-86110 REWAI Project Number 86021

Prepared by

R. E. WRIGHT ASSOCIATES, INC. 3240 Schoolhouse Road Middletown, PA 17057

September 1988

TABLE OF CONTENTS (VOLUME 2)

						Ī	Page
5.0	HYDR	OGEOLOG	IC INVEST	GATION			5-1
	5.1	Site G	eology	•••••	• • • • • • • • • • • • • • • • • • • •		5-1
		5.1.1 5.1.2	Geologic Geologic	Cross Sect	ions	• • • • •	5-6 5-9
	5.2	Soil I	nvestigat	ion	• • • • • • • • • • • • • • • •	• • • • •	5-10
		5.2.1 5.2.2 5.2.3	Collecti	on of Soil	Samples		5-11
			5.2.3.2 5.2.3.3 5.2.3.4 5.2.3.5	Volatile On Base Neutra Pesticides Cyanide and	rganic Aromatics al/Acid Extractabl and PCBs d Oil and Grease Dibenzofurans	les	5-19 5-19 5-31 5-31
		5.2.4	Soil Sam	pling Result	ts	• • • • •	5-44
	5.3	Ground	water Inv	estigation.			5-46
		5.3.1 5.3.2			ater Investigation ing System Procedu		
			5.3.2.1	Monitoring	Well Construction	3	5-47
				5.3.2.1.1 5.3.2.1.2 5.3.2.1.3	Deep Exploratory Shallow and Intermediate Well Well Construction	.s	
					Requirements and Decontamination.		5-56
			5.3.2.2	and Record	n, Sample Collecti		5-57
			5.3.2.3		mperature Headspac		5-59
		5.3.3	Groundwa	ter Sampling	g Procedures	••••	5-63
			5.3.3.1 5.3.3.2	Well Develo	onopment and Samplir g Monitoring Wells g Round (Round #1)	ng .	

		5.3.3.2.1	Wells NW-2-81,	
			NW-3-81, NW-6-81	5-65
		5.3.3.2.2	Well R-2	5-65
		5.3.3.2.3	Well R-4	5-66
		5.3.3.2.4	Wells HAV-02, HAV-07,	
		•	HAV-08, HAV-10, and	
			NW-1-81	5-66
			2 02111111111111111	0 00
	5.3.3.3	Well Purgi	ng and Sampling of	
			Monitoring Wells	
				5~66
	5.3.3.4	Well Devel	opment and Sampling of	
			alled Monitoring Wells.	5-67
	5.3.3.5		meters	
•	5.3.3.6		nalyses	
	5.5.5.0	CHEMICAL A	maryses	5-09
		5.3.3.6.1	HSL Plus Oil and	
			Grease	5-69
		5.3.3.6.2	Dioxin and Dibenzo-	•
			furan	5-70
		-		
5.3.4	Hydrogeo	logic Testi	ng	5-72
	•	•		
	5.3.4.1	Purpose	• • • • • • • • • • • • • • • • • • • •	5-72
	5.3.4.2	Groundwate	r Level Monitoring	5-72
	5.3.4.3	Aquifer Te	sting	5-73
		-	•	
		5.3.4.3.1	Slug Tests	5~73
		5.3.4.3.2	Packer Tests	5-75
		5.3.4.3.3	Summary of Findings	5-76
	5.3.4.4	Groundwate	r Hydrology	5-76
		5.3.4.4.1	Water Table Contour	
			Map	5-76
		5.3.4.4.2	Vertical Groundwater	
			Gradient	5-78
		5,3.4.4.3	Hydraulic	
			Conductivity	5-78
		5.3.4.4.4	Calculation of Ground-	
			water Velocity	5-84
		5.3.4.4.5	Calculation of Ground-	
	'		water Discharge	5-87
		_		
5.3.5	Groundwa	ter Samplin	g Results	5-88
	5.3.5.1		reliminary Sampling	
		Round	• • • • • • • • • • • • • • • • • • • •	5-89
		5.3.5.1.1	Metals	5-89
		5.3.5.1.2	Volatile Organic	
•			Aromatics	5-89
		5.3.5.1.3	Base Neutrals/AcidAR3	00143
			Extractables	2-30
		5.3.5.1.4	Pesticides/PCBs	5-101

				5.3.5.1.5	Cyanide and Oil and	
					Grease	5-105
				5.3.5.1.6	Dioxins and Dibenzo-	
					furans	5-105
			5.3.5.2	Sampling Re	ound #2	5-114
					,	
•				5.3.5.2.1	Metals	5-114
					Volatile Organic	
				0.0.0.2.2	Aromatics	5-121
				5.3.5.2.3		J 751
				J.J.J.Z.J	Extractables	E-120
				E 2 E 2 4	Pesticides/PCBs	
						2-130
				5.3.5.2.5	Cyanide and Oil and	
					Grease	5-142
				5.3.5.2.6		
					furan	5-148
		5.3.6	Affected	Area		5-163
			5.3.6.1	Immiscible	Hydrocarbon Plume	5-163
			5.3.6.2		Hydrocarbon Plume	
			5.3.6.3		Findings	
				J		
6-0	STIRI	ייים או איי	ED THUESON	CATTON	• • • • • • • • • • • • • • • • • • • •	6-1
0.0	5010	. M. H.	DIC TWATPOT3	LGHT TOM	• • • • • • • • • • • • • • • • • • • •	0-1
	6 7	Surface	a Water Di	en i nace		6_1
	0.1	Surrac	s waret DI	armage	• • • • • • • • • • • • • • • • • • • •	0-1
	6 2	Cfo.	a Wahan Ga		Vacal and David	<i>-</i> -
	0.2	Surface	e water Sa	smbring or i	Naylors Run	6-3
•						
					and Locations	
		6.2.2			f Chemical Parameters	
		6.2.3			• • • • • • • • • • • • • • • • • • • •	
		6.2.4	Summary c	of Findings.		6-23
	6.3	Sedimer	nt Samplir	ng of Naylon	rs Run	6-26
			<u> </u>	_		
		6.3.1	Sediment	Sampling Lo	ocations	6-26
					rocedures	
		6.3.4				
		0.2.4	sammery c	i rinaings.		0-43
7 0	ATD	OUTS T TIME	MONTHODAY	C THIRDOTC	MITON	~ ,
7.0	AIK	QUALITY	MONITORIN	G INVESTIGA	ATION	/-1
		33 0		_ 4_ 4		
	7.1					
	7.2					
	7.3	Chemica	ıl Results	· • • • • • • • • • • • • • • • • • • •		7-5
8.0	OTHE	R INVEST	rigations.	• • • • • • • • • •		8-1
	8.1	Previou	ıs Biota I	nvestigation	ons	8-1
	8.2	Microbe	Investio	ations		.8 . 1 .
				,	AR30	0144

9.0	SUMMA	ARY O	F FIN	DINGS.	• • • • • • •	• • • • • •	• • • • • • • • •	• • • • • •	• • • • • •	9-1
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Air. Hydr Soil Grou Subs Surf Sedi	rogeol andwat surfac ace W ment.	ogy er e Oil ater						9-2 9-2 9-6 9-8 9-9 9-10 9-12
10.0	REFER	RENCE	S	• • • • • •	• • • • • • •	•••••	• • • • • • ·	•••••	••••	10-1
				3	LIST OF	FIGURES	5			
Figure	e 5 - 1	., Ge	neral	ized St	ratigra	phic Co	olumn	• • • • • •	• • • • • •	5-2
Figure	≥ 5-2	, So	il Sa	mpling	Locatio	n Map.	• • • • • •	•••••	•••••	5-7
Figure	∍ 5−3	, So	ils -	Total	Selecte	d Metal	ls	• • • • • •	• • • • • •	5-12
Figure	≥ 5 - 4	, So	ils -	Total	Base Ne	utral/	Acid Ex	tractab	le	5-18
Figure	5-5	, So	ils S	amples	Total P	estició	les	• • • • • •	•••••	5-30
Figure	5-6	, So	ils S	ample (oil and	Grease.	•••••	• • • • • •	•••••	5-35
Figure	5 −7	, So	ils -	Total	Dioxin	Isomers		• • • • • •	• • • • • •	5-37
Figure	5-8	, So	ils -	Total	Dibenzo	furan 1	somers	• • • • • •	• • • • •	5-42
Figure	5-9	, De	ep Wei	ll Cons	tructio	n	•••••	• • • • • •		5-43
Figure	9 5−1				ntermed				••••	5-49
Figure	5-1	1, T	otal V	Volatil	e Organ	ic Aron			• • • • • •	5-54
Figure	5-1	2, T	otal 1	BNAs	• • • • • •	• • • • • •	• • • • •	• • • • • •	••••	5-95
					des	• •	_	-		
Figure	5-1	4, 0	il and	d Greas	e	•••••	• • • • •	• • • • • •	• • • • •	5-106
Figure	5-1	5, T	otal I	Dioxin	Isomers			• • • • • •	• • • • •	5-107
Figure	5-1	6, T	otal I	Dibenzo	furan I	somers.			•••••	5-111
Figure	5-1	7, T	otal S	Selecte	d Metal:	5	• • • • • •	• • • • • •	• • • • •	5-115
•									AR30	

Figure	5-18,	Total Volatile Organic Aromatics	5-122
Figure	5-19,	Total Base Neutrals/Acid Extractables	5-128
Figure	5-20,	Oil and Grease	5-143
Figure	5-21,	Total Dioxin Isomers	5-149
Figure	5-22,	Estimated Dioxin Contamination in Groundwater.	5-160
Figure	5-23,	Total Dibenzofuran Isomers	5-162
Figure	5-24,	Oil Movement Into Monitoring Well	5-164
Figure	5-25,	Estimated Oil Thickness	5-167
Figure	5-26,	Estimated Immiscible Hydrocarbon Affected Area Map	5-168
Figure	5-27,	Pentachlorophenol Concentration Map, Saprolite Units	5-170
Figure	5-28,	Pentachlorophenol Concentration Map, Bedrock	5-172
Figure	5-29,	Trichloroethene in the Saprolite Units	5-174
Figure	5-30,	Trichloroethene in the Bedrock	5-176
Figure	5-31,	***************************************	5-177
Figure	6-1,	Surface Water Total Selected Metals	6-10
Figure	6-2,	Surface Water Total Volatile Organic	6-13
Figure	6-3,	Surface Water Pentachlorophenol	6-17
Figure	6-4,	Total Selected Metals	6-28
Figure	6-5,	Sediment Pentachlorophenol	6-37
Figure	6-6,	Sediments Total Base Neutrals/Acid Extractables	6-38
Figure	6-7,	Sediments Oil and Grease	6-40
Figure	7-1, 2	Air Quality Sampling Station Location Map	7-3

LIST OF TABLES

Table	5-1,	Soil M	etals 1	Results	• • •	• • • • • •	• • • • •	• • • • •	• • • • • •	• •	5-13
Table	5-2,	Soil V	olatile	e Organ	nic	Result	s	• • • • •	• • • • • •	• •	5-20
Table	5-3,	Soil B	ase Nev	itral/A	ció	l Extra	ctable	Resu]	lts	• •	5-24
Table									Cyanide		5-32
Table	5-5,	Soil D	ioxin F	Results		• • • • • •	• • • • •	••••		• •	5-38
Table	5-6,	Soil D	ibenzoi	furan R	lest	ılts	<i>.</i>	•••••	• • • • • •	• •	5-40
Table	5-7,	Ambient	t Tempe	erature	He	adspac	e Anal	ysis H	Results.	• •	5-61
Table	5-8,	Ground	water S	Samplin	ıg G	Slasswa:	re	• • • • •	• • • • • •	• •	5-71
Table	5-9,	Static	Water	Level	Ele	vation	s	• • • • •	• • • • • •	• •	5-74
Table	5-10,	Vertic	cal Gra	dients	an	d Dire	ction	of Flo	w	• •	5-79
Table	5 - 11A								g Test		5-81
Table	5-11B	, Bedro	ock Slu	g Test	Re	sults.	• • • • • •	••••	• • • • • •	• •	5-82
Table	5-12,	Repres	sentati	ve Val	ues	of Por	rosity	• • • • •	• • • • • •		5-86
Table	5-13,	Ground	lwater	Round	#1	Metals	Resul	ts	• • • • • •		5-90
Table	5-14,	Ground	dwater	Round	#1	Volati:	le Org	anic F	Results.	• •	5-93
Table	5-15,	Ground Extra	lwater ctable	Round Result	#1 s	Base Ne	eutral	/Acid	•••••	, . :	5-97
Table	5-16,					Pestici ide Res			• • • • • •	, .	5-103
Table	5-17,	Ground	lwater	Round	#1	Dioxin	Resul	ts	• • • • • •		5-10 9
Table	5-18,	Ground	lwater	Round	#1	Dibenzo	ofuran	Resul	ts	, . !	5-112
Table	5-19,	Ground	lwater	Round	#2	Metals	Resul	ts	• • • • • •	!	5-116
Table	5-20,	Ground	lwater	Round	#2	Volatil	le Org	anic R	esults.		5-123
Table	5-21,					Base Ne					5-131

Table	5-22, Groundwater Round #2 Pesticide/PCB and Oil & Grease and Cyanide Results	5-143
Table	5-23, Groundwater Round #2 Dioxin Results	5-150
Table	5-24, Groundwater Round #2 Dibenzofuran Results	5-155
Table	6-1, Surface Water Parameters	6-5
Table	6-2, Surface Water Metals Results	6-7
Table	6-3, Surface Water Volatile Organic Results	6-11
Table	6-4, Surface Water Base Neutral and Acid Extractable Results	6-15
Table	6-5, Surface Water Pesticides/PCB and Cyanide Results	6-18
Table	6-6, Surface Water Dioxin Results	6-21
Table	6-7, Surface Water Dibenzofuran Results	6-24
Table	6-8, Sediment Metals Results	6-30
Table	6-9, Sediment Volatile Organic Results	6-32
Table	6-10, Sediment Base Neutral/Acid Extractable Results.	6-34
Table	6-11, Sediment Pesticide/PCB, Cyanide, and Oil and Grease Results	6-41
Table	6-12, Sediment Dioxin Results	6-44
Table	6-13, Sediment Dibenzofuran Results	6-46
	LIST OF PLATES	
Plate	1, Project Base Maps In Back Po	cket
Plate	2, Geologic Cross Sections In Back Po	cket
Plate	3, Fence Diagram In Back Po	cket
Plate	4, Water Table Contour Map (3/17/88 Data)	cket

CONTRACT LABORATORY PROGRAM (CLP) DATA QUALIFIERS

For reporting results in the accompanying chemical result tables, the following contract-specific qualifiers are used. The qualifiers defined below are not subject to modification by the laboratory.

The EPA-defined qualifiers to be used are as follows:

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria, but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analysis is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis. If one or more compounds have a response greater than full scale, the sample or extract must be diluted and reanalyzed according to the specifications.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- X Other specific flags and footnotes may be required to properly define the results.

5.0 HYDROGEOLOGIC INVESTIGATION

5.0 HYDROGEOLOGIC INVESTIGATION

5.1 Site Geology

The Havertown PCP site is underlain by a relatively thin (2 to 28 feet) sequence of unconsolidated materials consisting of fill, micaceous saprolite, and biotite-schist saprolite overlying a biotite-quartz-feldspar schist and biotite-quartz-feldspar gneiss bedrock. Lithologic and well construction logs describing the different materials encountered during drilling are included in Appendix 1. Well locations are shown on Plate 1.

The typical lithologic sequence listed above appears fairly continuous from National Wood Preservers (NWP) property through Philadelphia Chewing Gum (PCG) property. However, at some point between PCG property and the rear of the properties of Rittenhouse Circle, the micaceous saprolite apparently thins out, resulting in fill overlying the biotite-schist saprolite and biotite-quartz-feldspar gneiss bedrock near Rittenhouse Circle. In addition, it appears that a limited amount of Pleistocene sand and gravel terrace deposits may be present in the vicinity of HAV-07. These deposits may have eroded into or have been deposited upon the biotite-schist saprolite, which overlies the bedrock, prior to being covered by fill. Figure 5-1 summarizes the stratigraphic column for the geologic units encountered at the Havertown PCP site.

The surficial layer of fill material consists of varying percentages of very fine- to coarse-grained sand, silt, and gravel, with lesser amounts of cinders, wood, and metal debris and railroad ties (on NWP property). The depth of the fill appears to be fairly consistent (approximately five feet) under the NWP plant; however, along the west side of Eagle Road,

FORMATION	STRATIGRAPHIC SECTION	THICKNESS IN FEET +/-	DESCRIPTION
		0.05	Macadam; parking lots, road surface.
Unconformity		2-18	Fill; varying percentages of very fine to coarse grained sand, silt, and gravel. Lesser amounts of cinders, wood, and metal debris.
Pleistocene Terrace Deposits	00000	6? VARIES	Sand and gravel deposit; not encountered during the RI.
Unconformity?		<5-13	Micaceous Saprolite; dark yellowish-orange to moderate yellowish-brown highly micaceous, very fine to medium-grained sand, with some silt. Remnant foliation dipping 35 to 40 degrees.
Gradational? Wissahickon Formation Gradational?		4~18	Biotite-Schist Saprolite; brownish-black and dark gray, highly micaceous fine to medium-grained silty sand. Remnant foliation dipping approximately 40 degrees.
Gladational f		UNKNOWN	BiotIte-Quartz-Feldspar Schist/Gneiss; very light gray and dark gray, highly foliated, (dipping 30 degrees) moderately fractured. Conformable pegmatite pods and stringers.

FIGURE 5-1:

HAVERTOWN PCP SITE

AR300152 HAVEHIUMI, ... GENERALIZED STRATIGRAPHIC COLUMN

checked JST date 5.25.88 86021-033-AA

approximately 5 to 15 feet of fill are present under the Support Zone, Swiss Farm Market, and Young's Produce. On the east side of Eagle Road, the fill thickens toward the northeast and ranges between 4 and 18 feet thick. The amount of fill then thins eastward and ranges between 0 and 4 feet thick in the Rittenhouse Circle area.

Directly underlying the fill is a saprolite unit which, based upon field examination, has been segregated into two divisions using the apparent mineralogies and interpreted parent materials. The upper saprolite division consists of a dark yellowish-orange to moderate yellowish-brown highly micaceous, very fine to medium-grained sand, with some silt (SP and SM). Remnant foliation from the parent bedrock is occasionally present and dips approximately 35 to 40 degrees from the horizontal with some unknown strike. Highly weathered muscovite schist fragments are present throughout the interval. The basal saprolite division appears to directly underlie the upper saprolite division throughout the study area, with the exception of the Rittenhouse Circle area just east of PCG. Here, the basal saprolite directly underlies the fill layer. The basal saprolite consists of a brownish-black and dark gray highly micaceous fine- to medium-grained silty sand (SP-SM). Remnant foliation from the parent bedrock is fairly common and dips approximately 40 degrees from the horizontal with an unknown strike. Highly weathered biotite schist/gneiss fragments are present throughout the division.

Directly underlying the basal saprolite throughout the study area is a very light gray and dark gray biotite-quartz-feldspar schist/gneiss bedrock. The contact separating the overlying saprolites from the bedrock appears to be highly gradational,

probably a result of variations in weathering. Observations made during the drilling program indicate that the bedrock appears highly foliated under the NWP plant and seems to become less foliated eastward under the PCG plant. Throughout the area of investigation, the bedrock is moderately fractured, with numerous weathered zones separated by more competent rock. Most fractures were observed to form along the planes of foliation, which dip at approximately 30 degrees from the horizontal. Because rock cores obtained during the drilling program could not be oriented to an azimuth line without expensive drilling techniques, the strike and direction of dip could not be ascertained. addition, infrequent minor shallow and high-angle fractures were present within the bedrock. In the deep exploratory wells on the east side of Eagle Road on the PCG property, the bedrock was observed to contain small (approximately one foot in thickness) pegmatite pods consisting of quartz, oligoclase feldspar, muscovite, and a trace of biotite. These pods appeared to be conformable with the foliation and contained minor intra- and intergranular fractures. In the deep monitoring well at CW-4, these fractures in the pegmatite pods were highly solutioned and appeared to provide a good pathway for water to move.

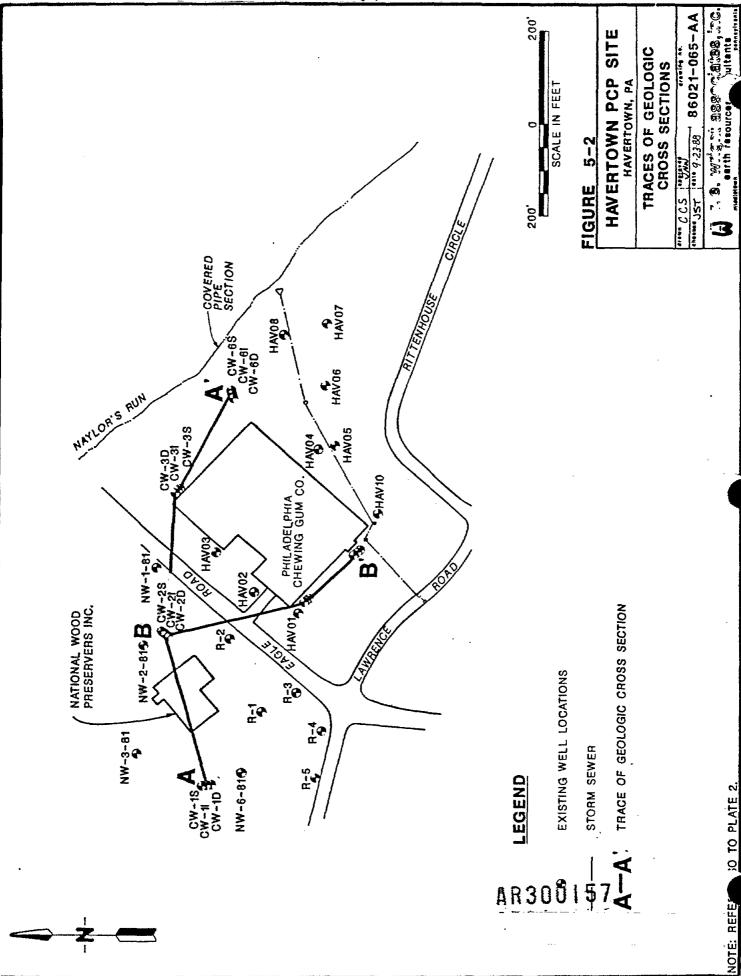
A reconnaissance of the area around the site was performed to identify bedrock outcrop exposures and to measure the orientation of any fractures which were found. Only two outcrop exposures were located in the vicinity of the site. The first was a rather poor bedrock exposure in an embankment along the east-west trending abandoned railroad bed which essentially parallels the northern fence line of NWP. The outcrop is located on the south side of the abandoned bed, approximately 2,500 feet west of NWP. Bedrock here consisted of soft to moderately hard, heavily weathered schist, which possessed a well-developed follows:

(laminated appearance) and prominent joints (fractures in rock). Foliation was found to be oriented north 50 to 64 degrees east and dipping 83 degrees northwest, while joints were oriented north 68 degrees west dipping 39 degrees south-southwest and north 72 degrees west dipping 84 degrees south-southwest.

The second outcrop investigated was located in an old quarry located approximately 7,500 feet southeast of the site, near the intersection of Route 1 and Route 3. Here, the bedrock consisted of a hard, quartz and muscovite schist, with well-developed foliation and joint patterns. Foliation was measured as north 64 degrees east dipping 42 degrees north-northwest, while joints were observed with orientations of north 61 degrees east dipping 82 degrees north; north 68 degrees east dipping 83 degrees south; and south 61 degrees west dipping 79 degrees south-southeast.

To further attempt to identify bedrock fracturing, a fracture trace analysis was performed for the site. Fracture trace analysis employs studying aerial photographs for natural linear features which may consist of tonal variations in soils, alignment of vegetation, valleys, ridges, etc., that exhibit some linear orientation. Fracture traces frequently are zones which are less resistant to erosion than the surrounding materials, thereby affording an increased permeability. In addition, these zones may also be areas of groundwater drainage.

A review of available historical aerial photographs from 1958 until 1973 yielded no additional fracture information, as the area consisted primarily of densely populated urban land.


5.1.1 Geologic Cross-Sections

Using the combined geologic information from previous investigations and the current RI studies, two geologic cross-sections labeled A-A' and B-B', as shown on Figure 5-2, have been constructed. As shown on Plate 2, cross-section A-A' depicts the interpretation of the subsurface geology from west to east across the site, while cross-section B-B' provides a subsurface view from the northwest to the southeast.

On cross-section A-A', there are three units which comprise the geologic materials found under the site. Listed in increasing depth below the ground surface, these are fill; a saprolite unit, which has been separated into two divisions; and the schist/gneiss bedrock.

The fill unit is of a fairly uniform depth across the NWP property and becomes somewhat thicker in the vicinity of the support zone. The thickness of the fill is not known under Eagle Road; however, it significantly thickens eastward toward monitoring well series CW-6. The water table apparently does not extend into the fill unit in this cross section; however, it does come very close to its base between monitoring well series CW-3 and CW-6.

The saprolite unit has been separated into two divisions, an upper micaceous saprolite and a basal biotite-schist saprolite, based upon the unit's field-estimated mineral composition and inferred parent rock origin. The micaceous saprolite division is a highly weathered layer which is thickest on the west side of Eagle Road, while thinning abruptly and slightly increasing its dip east of the road. From the west toward the east, the layer

goes from mostly saturated to slightly saturated under Eagle Road and then becomes almost fully saturated eastward.

The biotite-schist saprolite division follows approximately the same thickness pattern as the micaceous saprolite layer in that it is thick west of Eagle Road and abruptly thins and remains thin east of Eagle Road. It appears that the biotite-schist saprolite division is fully saturated across this cross-section (A-A').

The biotite-quartz-feldspar schist/gneiss (bedrock) seems to possess a minor mound-like shape under Eagle Road, which is exaggerated three times because of the cross-section scales. The origin of this mound is not known; however, its presence may play a significant role in the groundwater hydrology at the site. To the west of the mound, the bedrock gently slopes downward toward Eagle Road, while east of the mound, the bedrock surface has a slightly greater eastward dip. The bedrock is completely saturated across the site and there are no apparent confining layers.

Cross-section B-B' provides a view of the geology of the site looking northeast. The geologic units are the same as those described previously in cross-section A-A'; however, because of uncertainties in or the lack of geologic information on previously installed monitoring wells, the cross-section (B-B') is highly interpretive between monitoring well series CW-2 and CW-4. As interpreted, a bedrock high occurs in the vicinity of well R-2, in a fashion similar to that presented in cross-section A-A'.

Above the bedrock lies the saprolite unit as discussed previously; however, between CW-2 and CW-4 series monitoring wells, the division contacts are uncertain. This uncertainty factor will become important when dealing with contaminant migration, covered in Section 5.3.6. As depicted though, the biotite-schist saprolite is almost completely saturated across this area, except in the vicinity of well R-2. The overlying micaceous saprolite division is only slightly saturated. appears then that the surficial fill unit is completely unsaturated (by the water table) at this location, except possibly near storm sewer inlet #2 where a higher water table could intersect the base of the fill. Accordingly, the storm sewer inlets (#1 and #2) do not appear to influence groundwater or contaminant flow at this location.

Hydraulic potential and generalized groundwater flow lines are presented on these figures. Discussion concerning them will be presented in Section 5.3.4.

5.1.2 Geologic Fence Diagram

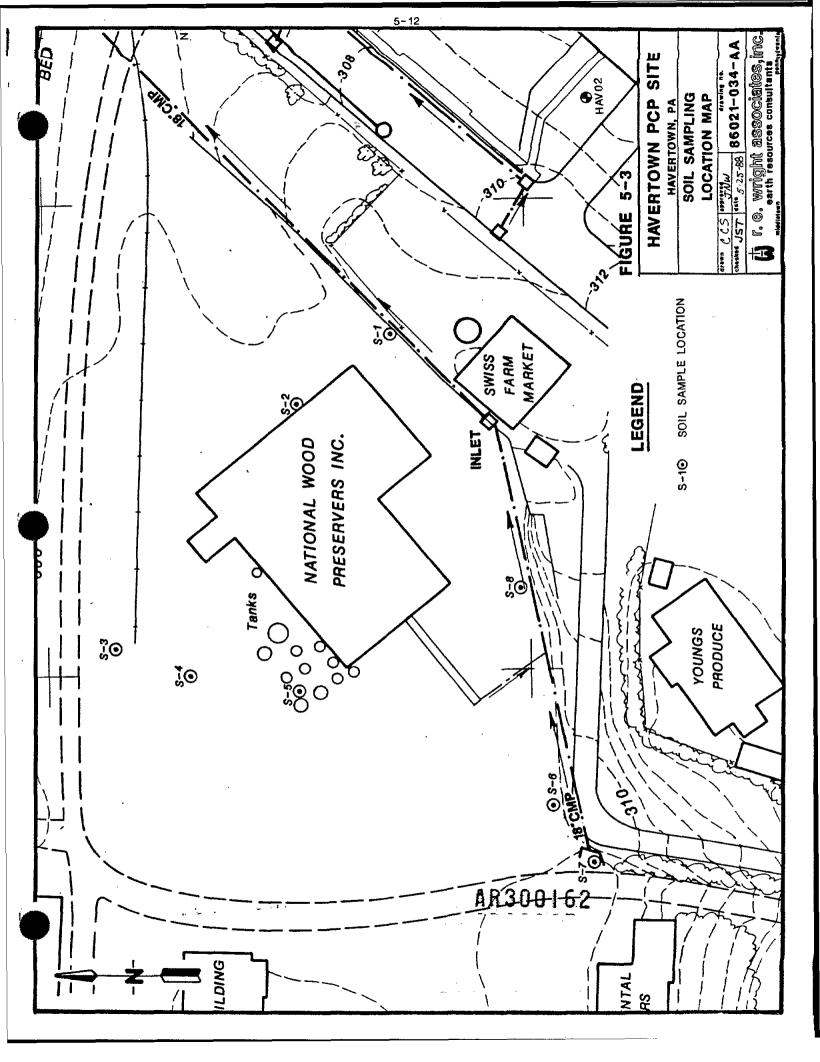
To organize and effectively present the hydrogeologic information obtained by previous investigations, as well as the data from the current RI, REWAI has compiled an interpretation of the subsurface at the Havertown PCP site as shown by Plate 3. This drawing, known as a fence diagram, combines the geologic data from available sources and depicts the interpretation in a three-dimensional perspective. The diagram is vertically exaggerated three times and the NWP and PCG buildings are overlain to provide an orientation from which observers may study the site.

There are five different stratigraphic units which are presented on the fence diagram, namely: macadam, fill, sand and gravel, saprolite, and biotite-quartz-feldspar schist/gneiss (bedrock). The interrelationships between the various units, as described previously in Section 5.2, may be observed on the fence diagram. Portions of the diagram at the NWP plant (NW-2-81 and NW-3-81) and along Eagle Road (R-2, R-3, R-4, and R-5) are either blank or heavily question marked as a result of lack of geologic and well construction data from previous investigator's well logs. This results in large uncertainties in providing a correlation with newly acquired data. The net result is a lack of information needed to ascertain the migration pathways for immiscible and dissolved contaminants in the groundwater system.

Overall, the fence diagram provides the viewer with information concerning the spatial orientations of the geologic units, the monitoring wells constructed in them, and the man-made factors which may influence groundwater flow. It is suggested that the reader refer to the fence diagram while reading appropriate report sections which follow.

5.2 Soil Investigation

5.2.1 <u>Introduction</u>


The purpose of the soil sampling program was to determine estimates of the presence, extent, and degree of soil contamination at the NWP plant and to establish or modify levels of personnel protection required for future invasive activities.

At each of eight locations shown on Figure 5-3, an attempt was made to collect soil samples from four depths: surface, one foot, two feet, and three feet. Based upon the results of a field OVA scan of the samples, 16 samples and 1 duplicate sample were chosen for analysis from the anticipated 32 samples to be obtained. In addition, two background samples which were collected off-site (at REWAI's office in Middletown, Pennsylvania) and one performance evaluation sample were included as part of the dioxin/dibenzofuran analysis. Soil samples were analyzed for dioxin and chlorinated dibenzofuran isomers, the complete Hazardous Substance List (HSL), and oil and grease.

Soil sampling began on July 16, 1987, by utilizing a 3 1/2-inch diameter hand auger in which to collect samples from the specified depths. It was immediately apparent that due to the nature of the fill material at the NWP plant--consisting largely of tightly compacted sand, gravel, slag, and railroad ties--hand augering would not succeed in providing the necessary samples. A backhoe was then obtained to assist with sampling. Sample collection resumed on July 20, 1987, and continued through July 22, 1987. Even with the use of the backhoe, only 14 of the anticipated 32 soils samples were collected from the 8 sample points because of refusal of the backhoe caused by fill materials.

5.2.2 Collection of Soil Samples

At each soil sampling location, samples were collected at each consecutive depth interval required, unless backhoe refusal was attained first. Prior to mobilizing on to the next sampling location, the backhoe, sampling equipment, and the sampler's outer gloves were decontaminated with a high pressure steam

cleaner. This procedure was used to reduce the potential for cross contamination.

Upon mobilizing to the next sampling point, the sampler would obtain two samples of the surface (zero to two inches) interval using a clean stainless steel trowel. One sample was placed into a laboratory pre-cleaned 1000 milliliter (ml) clear glass, widemouth sample bottle, provided by the U. S. Environmental Protection Agency (EPA), for dioxin and chlorinated dibenzofuran analysis, while the second sample was placed into a 1 liter, widemouth, amber glass bottle for HSL and oil and grease analysis by CompuChem Laboratories.

Successive depth intervals were attained, one at a time, by use of the backhoe. At each depth interval, the vertical wall of the excavation was first scraped off to expose a fresh soil surface. Samples were then collected from the vertical wall and placed into the appropriate glassware as previously described. All sample bottles were appropriately labeled as directed by the Site Operations Plan (SOP). The HSL soil samples were placed into sample shuttles with cold packs and shipped by Federal Express to REWAI's laboratory subcontractor, Compuchem Laboratories. The dioxin/dibenzofuran soil samples were wrapped in aluminum foil to reduce their exposure to light and packaged on ice in 48-quart coolers. As per EPA's instructions, the dioxin/dibenzofuran soil samples were shipped to California Analytical Laboratory (CAL) for analysis under the direction of EPA as Case \$3150C.

5.2.3 Results of Soil Sampling

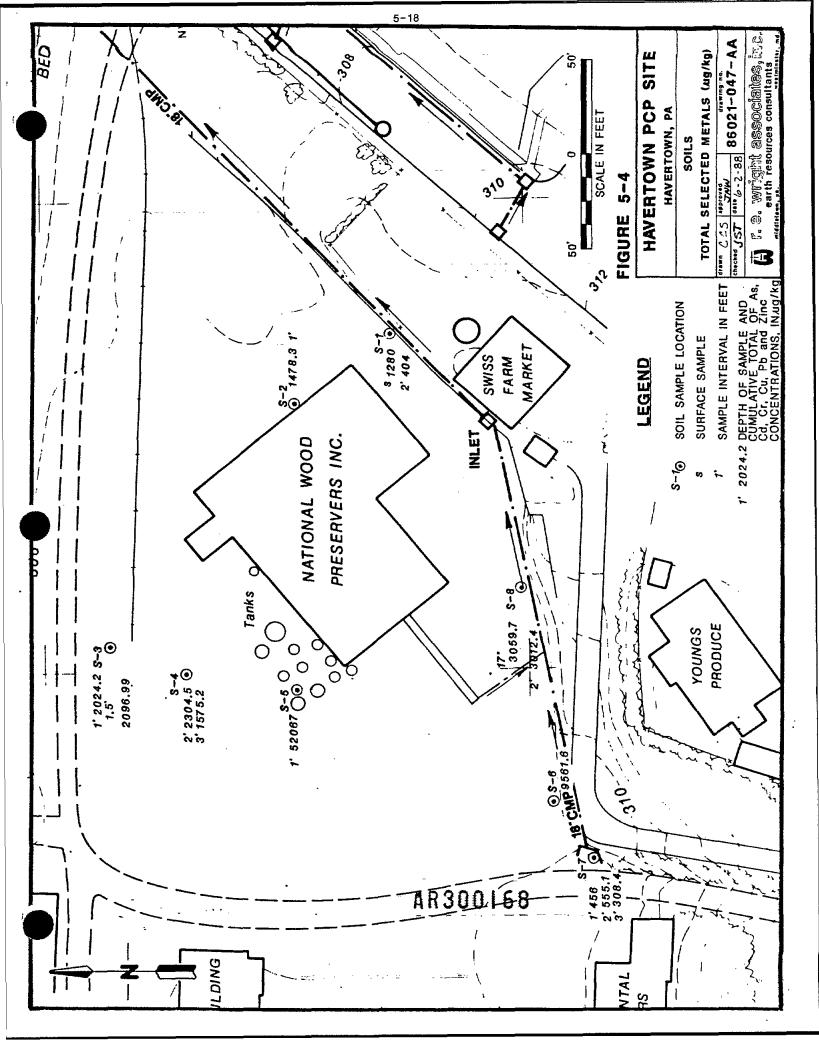
5.2.3.1 <u>Metals</u> - Soil samples were collected at various depths between the surface and three feet at eight locations on the NWP plant site. The results of the analysis for total metals in the soil samples are shown in Table 5-1. The metals which exhibited the highest concentrations in soil samples at NWP were calcium, magnesium, iron, aluminum, sodium, and potassium. Lesser amounts, although still elevated, of arsenic, cadmium, chromium, copper, lead, mercury, and zinc were also found.

These last metals listed are the primary metals of concern at the Havertown PCP site because most of these metals are constituents of wood treating solutions presently used on a routine basis at NWP. Reviewing the data for the metals of concern in Table 5-1 indicates that elevated quantities of arsenic, chromium, copper, lead, and zinc are present in the soils. Arsenic has reported concentrations ranging between 1.4 and 6850 ug/kg, while chromium was found between 56 and 22,300 ug/kg. Copper was detected at levels between 43 and 9,790 ug/kg, and lead at 12 to 108 ug/kg. Zinc was present at levels from 183 to 13,000 ug/kg.

Figure 5-4 depicts the total concentrations of arsenic, cadmium, chromium, copper, lead, and zinc, in ug/kg in NWP soils. Because this was a preliminary soil investigation, designed more to detect the presence of contaminants and the concentrations at which they are present, and due to the small sample base, in which 14 samples were analyzed from 8 locations, it would be inappropriate to contour contaminant concentrations. It is apparent from the map, that the area around the storage tanks has significantly higher concentrations of metals than other sampled

r.e. wright as beiates, inc.

Table 5-1 Soil Metals Results


		11 UG/KG UG/KG	U6/K6 U6/K6	U6/K6	9X/90 H	# CV UG/KG	5.9 UG/KG	1.6 UG/KG	0.52 UG/KG UG/KG	9X/90	06/X6	E US/KG	DG/KG	9X/90	9¥/9A	UG/KG	94/46	DE/K6
84021 Sult 5-4 3* 07/23/87 Sult 5-1 3*	142910	2 8	9.68	5 8	. 含	6 .3	E	8	5	2	7530	%	5845	5.5	7,2200	23060	2	1520
		11 UG/KG UG/KG	9X/90 m	98/KG	9X/90 H	# CV UG/KG	5.6 UG/KG	1.6 US/KG	1.478 UG/KG UG/KG	06/K6	94/96 M 16/16	E US/KG	OG/KG	5%/9A	W6/K6	93/90	U6/K6	06/KG
\$6021 \$011 \$-4.2* \$07/23/87	142909								_									
		10 UG/KG UG/KG	06/KG	US/KG	M F W6/KG	# CV UG/XG	5.5 UG/KG	1.5 US/KG	4.8 U6/K6 U6/K6	166/KG	WE/KG	E 266/RG .	9X/90	US/KG	UG/KG	91/90	9x/90	91/90
85021 S011. 5-3 1.5' 07/23/87 1.5'	142998	墨 5.	6.93	489	3 28	6. 6.	2	E	2 S	115	23060	2 25	0989	m	2800	19000	0681	<u>8</u>
	•	10 UG/KG UG/KG	9X/90 W	UG/KG	3 F UG/XG	67/06/KG	5.6 UG/KG	1.5 UG/KG	9.49 CE/KE	DE/KG	98/90	E UG/KG	931/90	94/90	91/90	9X/9A	9X/90	DE/KG
84021 Soil. S-3 1' 07/23/87	142907	1980 137	0.67	<u></u>	3 =	0.27	.	8	13.5°C	\$	28200	8 2	2770	3.2	00099	126000	2100	1540
		11 UG/KG UG/KG	16/KG ■ 16/KG	9X/96	1 WG/KG	0.1 UG/XG	5.5 UE/KG	1.5 UG/KG	97/90 87.0 16/KG	9X/90	8/8	E 185/16	9X/90	US/KE	9X/90	06/K6	9X/9A	UG/KG
86021 SOIL S-2 1' 07/23/87	142906	ë 291 1€3	97.1	328	3	ਛੂ ∓	a	8	- -	100	3100	§ %	23.	1.1	40500	00669	15%	3480
		11 UG/KG UG/KG	6.0		=	≥	S.	3:	≥.		•	E 4	,					
86021 S01L S-1-2 102 S-1-2 102 S-1-2 S-1-2	142905		9.8 25.8	22 52	? \$	9.5	² ਛ	3	- - - - - - - - - - - - - - - - - - -	128	15700	<u> </u>	1050	2	29900	21000	968	33%
_		M W6/K6 U6/K6	•		-	-	-	-0	G		3	.						
84021 S011. \$4.0°.4° 07/16/87	141516	28 ¹²	0.52 80L	240	\$ ₹	0.33	ි සි	8	- KS	8	10900	2 8	2430	7.3	79900	134000	1610	2600
SITE POINT SAMPLE DATE DEPTH MATRIX	METALS LAB 1.D. 0																	
	CMPD CL. CMPD-DESC	ANTINONY ARSENIC	SERVIL TUM	CHROMIUM	EAO	MERCURY Herei	HELENIUM	SILVER		PARTOM	IROM	ANKAD TIM	A CALLED	308ALT	MCNES TUM	ALC IUM	300100	POTASSIUM
	כווגם כד																	5 5

r.e. wright associates, inc.

	327 341	11 05/K6 16/K6	US/K6	ii. V6/K6 U6/K6	3 V6/KG	57 UG/KG	.6 UG/KG	.6 UG/KG	0.5 UG/KG	06/KG	116/KG	M U6/K6	E 156/16	92/4E	9X/S0	06/K6	9X/90	U6/K6	06/K5
86021 S01L 5-8 2' 07/23/87 S0						_			58 58 58 58										
-							U6/K6 5.6 UG/K6	1.6 UG/KG	0.49 UG/KG UG/KG	UG/KG	06/K5	M (56/KG	E 195/XG	92/SE	92/99	16/KG	98/80	UG/KG	9X/9N
84021 S011 S-8 17* 67/23/87 17* Sq																			
	9A7 340 99	F U6/K6	U6/K6 1.93 U6/K6	93/98 116/16	M US/KG	.11 UG/KG	.8/KG 5.8 UG/KG	1.6 UG/KG	9X/9A	08/KG	9X/90	9X/90 #	E 116/KG	9X/91	91/90	9X/90	116/KS	9X/90	9X/90
86021 SOIL S-7 3' 3' SOIL 3'		# <u>- :</u>	~ ≅	39 39 39	2	를	≈ 5	2	- 2	8	47700	1820	82	24000	2	12100	20	=	9500
	<u> </u>	1 0%/KG	9x/90 # 06/x6	US/KG	N F UG/KG	DE/K6	US/KG S.B US/KG	1.6 US/KG	9X/90 02/X6	UG/K6	9X/90	M 05/KG	E UG/K6	9X/90	06/KG	DE/KE	06/KG	116/KG	96/KG
86021 S011 S-7 2* 07/23/87 S\$	142914	를 23 [<u>;; =</u>	<u>791</u>	: _	<u>.</u> ;	# #		0.7 246	823	58700	1300	162	33800	3	16600	4670	55	15200
,	<u> </u>	11 05/NS 16/NS	U6/KG	US/KG	# U6/K6	91/90 00 1	0.6/KG 5.9 UG/KG	1.6 UG/KG	0.52 UG/KG UG/KG	UG/KG	DE/KG	M U6/x6	E 116/KG	9X/90	94/gn	06/86	9X/90	9X/90	9X/90
86021 S01L S-7 1' 07/23/87 1' S0									₹ 2										
	34 St.	UG/K6	UG/K6 N UG/K6	UG/KG IIG/KG	# UG/KG	9X/90 A3 ¥	U6/K6 5.8 U6/K6	1.7 UG/KG	06/KG UG/KG	9)/90	U6/KG	N UG/KG	9X/9N 3	9X/90	06/KG	9¥/9N	9X/YC	9Y/9A	98/KG
86021 S011 S-6 1' 07/23/87	142912	688	9.6 9.6	2150	8	0.48	≖ ≅		57.50 57.50	E91	27200	2700	2	9880	₹.	42600	81500	\$230	3840
	5	ING/RE	06/KG N 06/KG	UG/KG	9X/90 #	9X/90 A2 #	U6/K6 0.89 U6/KG	2.5 UG/KG	0.79 UG/KG UG/KG	B6/KG	06/KG	M 136/KG	E UG/KG	06/K6	1.4 U6/K6	06/KG	UG/K6	U6/KG	822 UG/KG
86021 S011 S-5 1, 102 11, 1,	116241	6850	£9.0 ¥	22300	83	<u></u> ;	S 5		80L 13000	39	36960	2	75	928	B B	3260	7330	10900	æ
SCTE POINT SAMPLE DATE DEPTH MATRIX	METALS LAB 1.0. #																		
	3530-0410 CF CM50-0E36	WASENIC	SERVEL TOWN	CHROMIUM	EAD	FE ROURY	NICKEL Selenjum	SILVER	THALL TURE 21 NC	TARTUM	ROW	IANGANESE	ANADION	AL UNIT MOM	.08ALT	AGMES LUM	ALC:UM	WAT OUT	PETASSIUM
	CHPO CL											_	_		_	_	_		_

Table 5-1 (Cont'd) Soil Metals Results

Table 5-1 (Cont'd) Soil Metals Results Soil Metals Results Soil Mark Soil Mark	•	11444																		
S = = . = = =	Table Soll Mei																			
NPD CL CMPD-DES 101 M ANTHONY 102 M ASENTLI 103 M BERYLLI 104 M COPPER 105 M COPPER 106 M MCCCAT 109 M MCCCAT 111 M STALL 111 M STALL 111 M STALL 112 M STALL 113 M STALL 114 M BARLUM 115 M STALL 116 M MANGAMES	3530-04K3 13 04K3		I N ANTENORY	=	= :	= :	* ;	E E	=	*	= :	= =	=	=	*	= :	 . .	I :	*	 131-N POTASSIUM

locations. It is not believed that the full range of metals contamination was assessed by this soil sampling program.

5.2.3.2 <u>Volatile Organic Aromatics</u> - Volatile organic aromatic (VOA) chemical analysis was performed on soil samples collected from the NWP site. The results of this analysis, presented on Table 5-2, indicate that methylene chloride, acetone, 2-butanone, and total xylenes were the most frequently identified VOAs in the soil. However, because methylene chloride and acetone are frequent laboratory contaminants, their presence in the soil samples may be questionable. Accordingly, total xylenes was the most frequently identified VOA specie in the soil samples, with detected concentrations ranging from 5.1 to 2800 ug/kg. Also found in elevated concentrations were ethylbenzene (3.8 to 490 ug/kg), and toluene (6.1 to 390 ug/kg). Lesser amounts, listed in decreasing order, of benzene, 4-methyl-2-pentanone, chloromethane, tetrachloroethene, bromomethane, and trichloroethene were also identified.

Based upon this soil sampling, it appears that the primary contaminants in the soil are associated with petroleum hydrocarbons, probably from fuel oil. Secondary contamination in the soil from solvent-related VOAs was also found in relatively small amounts. The results of this VOA analysis should be considered questionable, as the soil sample jars were not septum sealed. As such, a map depicting the VOA compounds in the soil was not produced in this report.

5.2.3.3 <u>Base Neutral and Acid Extractables</u> - Base neutral and acid extractable analysis (BNA) was performed on soil samples collected from the NWP plant site during the preliminary sampling

r.e. wright associates, inc.

	Results
7-C arou	Organic
TOBI	Volatile
	Soil

		SITE	17079	120%	€ .	12021	86021		86021		86021	,	86021	
	- .	PO1MT SAMPUE	51 0*-6*	S-1 2.	چ <u>ې</u>	201. 2.1.	5-3 L		SOIL S-3 1.5'		Sell S-4 2'		301C S-4 3,	
,	, -	DATE	07/16/87	07/23/87 2°	07/23/87 1	787	07/23/67		07/23/87 1.5		07/23/87 2'		07/23/87 3*	
- 5	N) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	MATRIX	S	8		B	3		8		53		8	
	V.0.C. LAB 1.D. B	.0.	141496	142875	142876	≈ ‼	142877		142878		142879		142890	
¥ £02	DENZEME		18	5.7		5.6		J ug/kg	1.8	J ug/kg	쯢	5.8 ug/kg	80 f	5.8 ug/kg
≯ .02	_		801. 5.6 ug/kg	2.5	_			e ug/kg	蓋		藍	5.8 ug/kg	藍	5.8 ug/kg
			· •	2.				61/61 9	E	5.6 ug/kg	E 8	5.8 ug/kg	#	5.8 ug/kg
> 2	CHALUKUUDEMZERE Diregorinsia odanestualis		804 5.4 mg/kg	,,	19/19 69. 10/10 AM	7. 3.6 48/18		5.6 ug/19	5 &	5.6 mg/mg	E	S. 8 mg/kg	E E	5.8 Hg/Rg
) 2 2 2			; =	=	_	} =		24/5n El	를	11 ug/kg	.	12 ug/kg	i e	12 ug/kg
30 €			=	=	18 61/6n	=		H 49/kg	ĕ	11 ug/kg	롩	12 ug/kg	哥	12 ug/kg
211 V	CHLOROFORM		5.6	5.7	_	5.6		.6 ug/kg	룚	5.6 ug/kg	藍	5.8 ug/kg	줖	5.8 ug/kg ·
∦ 212	æ		5.6	2.7	_	5.6		64/6n 9.	æ	5.6 ug/kg	Ē	5.8 ug/kg	蓋	5.8 ug/kg
<u>*</u>			6	2.7		5.6		64/6a 9.	룚	5.6 ug/kg	麗	5.8 ug/kg	爱	5.8 ug/kg
215 4	1,2-DICHLORDETHANE		BOL 5.6 ug/kg	2.7	ug/kg BE	5.6		.6 ug/kg	z :	5.6 ug/kg	ಕ :	5.8 ug/kg	E	5.8 ug/kg
٠ ١	_			5.7	_	S. 6		64/6n 9	2	5.6 49/19	류 :	5.0 ug/kg	E	5.8 ug/kg
22				2.		5.6		6 kg/kg	E 8	5.6 ug/kg	E	5.8 ug/kg	E 8	5.8 kg/kg
> :	CIS-1,3-ULALGAGPAGPAGP		٠	?		9.4		61/61 9.	£ 9	0,0 ug/ tg	5 8	3.8 µg/kg	₹	O WOLLD
* a	E FRITZER FRE		? =	} =		? =			2		ž	2.0 mg/mg	ŝ	12 mg/kg &
22.0	CH DEONETISME		80t 11 so/le	=	uo/to El	: =		11 ug/kg	3	11 ua/ho	E	12 ua/ta	3	12 us/ha
A 22	METHYLENE CHLORIDE		<u>-</u>	-		-		8 ug/kg	=		=	e ug/tg	2	eg/kg
₩ 622	1,1,2,2-TETRACHLORDETHAME		5.6	5.7		5.6		.6 ug/kg	룚	5.6 ug/kg	줖	5.8 ug/kg	豎	5.8 ug/kg
24 ₩	TETRACHLORDETHENE		5.6	5.7		5.6		J ug/kg	=		2	ag/kg	5.3	J ug/kg
≥ 22	10. UEXE		9.5	5.7	-	3.		6¥/6#	7.5	ed/gu	9.9	ug/kg	= ;	ed/kg
A 922	TRAMS-1, 2-DICHLOROE THENE		ک ف	5.7	_			64/6n 9.	E	5.6 ug/kg	z	5.8 49/19		5.8 ug/kg
* * & &	1,1,1-TRICHEORGETHAME		801, 5.6 ug/kg	?:	49/149 BE	BDL 5.6 Ng/kg		5.6 kg/kg	E 8	5.6 ug/kg	\$ 8	5.8 49/19 5 a 49/16	5 2	5.8 Ug/11g 5.8 in/in
2 2	1910% OROSTREME		4	5		9		6 100/kg	ž Æ	5.6 uo/ta	E	5.8 so/ia	E	5.8 mg/kg
→	VINTL CHLORIDE		=	=		=		64/68	富	1 ug/lg	ĕ	12 ug/kg	鬟	12 ug/kg
} } } }	TRANSPIL, 3-DICHLOROPROPENE		5.6	5.7	_	5.6		.6 ug/kg	둂	5.6 ug/kg	麗	5.8 ug/kg	幺	5.8 ug/kg
V 125	STATE OF		5.6	5.7		5.6		.6 vg/kg	ౙ	5.6 ug/kg	Z	5.8 49/kg	E	5.8 ug/kg
252 V	3611		<u>-</u>	8	_	_		8 ug/kg	*	B ug/kg	2	3 8 ug/kg	9 2 :	8 ug/kg
23	~		=	=		=		ug/kg	2	ug/kg	震	12 ug/kg	±	49/kg
⇒ : ∑:	و ب		BDL 5.6 ug/kg	2.7	ng/kg BC	5.6		5.6 ug/kg	₹ :	5.6 ug/ltg	爱 :	5.8 ug/kg	E	5.8 49/tg
SS			=	=		=		_	ਵ		Ē	12 4g/kg	E	12 4g/kg
256 V	4-METHYL-2-PENTAROME		= :	=:		= :		11 ug/kg	E	11 ug/kg	젊 8	12 #g/kg	Æ 8	12 ug/kg
> = 	SUPPLY ACETAIE		= :	80° 11 49	E .)(11 ug/kg	•	_	£ :	11 ttg/11g	\$ \$	17 tig/reg	¥ 2	61/5N 71
▲ 497			BW. 3.6 Ug/19	••	£ .	l/ ug/kg	-	_	3	63/60	21	S1 /S1	AC7	Su isa

r.e. wright as ociates, inc.

Table 5-2 (Cont'd)
Soil Volatile Organic Results

											-						-	-	-							-	-				<u>.</u>				
	-	3 49/19	ea/ea e.	94/95 G		12 ug/kg	12 ug/kg	3 ug/kg							5.8 ug/kg		12 ug/kg	e ug/kg	.8 ug/kg	9 l/g/kg	61/6n 8.	61/61 B.	. 8 ug/kg	91/61 B.	.8 ug/kg	12 ug/kg	61/6n 8.	64/60 B.	9 49/19	12 ug/hg.	. g 10g/19	12 ug/kg	12 ug/kg	12 vg/kg	3 ug/kg
944021 Sailt. 5-8-2* 07/23/87 2* 50	142897	-	8	S 3		E	8	7.6																								2	翻	\$	5.1
-				5.8 89/kg																															
64621 SOIL S-B 17* 07/23/B7 17* S0	112884			E S																															
		J ug/kg		5.8 dg/kg					5.8 ug/kg							12 stg/kg	12 ug/kg		5.8 ug/kg		mg/kg	8 10g/kg	e ug/kg	5.8 eq/kg	J ng/kg	2 rg/hg	.B #g/kg	.e vg/kg	64/6a	12 ug/kg	e mg/fre	2 ug/kg	l2 wg/kg	12 ug/kg	ug/kg
84021 Sout. S-7 3' 5-7 3' 3'	142885				•	_										鞷	፷												25	26	S	=	롩	蓋	9
				5.4 kg/kg 5.4 ma/ka												12 ug/kg																12 ug/kg			ng/kg
84021 SOIL 5-7 2' 07/23/07 50	16881			2 2																				-											8.3
				5.7 mg/kg 5.7 mg/kg													11 ug/kg															11 ug/kg		II ug/kg	.7 ug/kg
84021 SOIL S-7 1' 07/23/07	142863																2																	e e	801 5
				5.1 89/89 6.1 80/80						, 1 ug/kg	.1 ug/kg	.1 eg/kg	.1 ug/kg	t ug/kg	6.1 ug/kg	12 ug/kg	12 <u>ug/kg</u>	8 ug/kg	6.1 ug/hg													12 ug/kg			
84021 SOIL S-6 1' 1733/97 17	142002	_				蓋	졅		_										_	_	_	_	_	_	_		_	-			_	鼋			_
		ug/kg	9 ug/kg	4 ω9/π9 ♦ πα/πα	9 *9/kg	# ug/kg	e ug/kg	å ng/kg	9 ag/kg	9 ug/kg	9 wg/kg	9 vg/kg	9 wg/kg	9 ug/kg	D ug/kg	J ug/kg	J wg/kg	8 vg/kg	9 ug/kg	J ug/kg	0 ug/kg	9 ug/kg	9 ug/kg	6x/6n 6	9 ug/kg	6 ug/kg	9 Mg/kg	9 ug/kg	8 ug/kg	ug/kg	9 ug/kg	0 ug/kg	64/60	8 09/kg	0 ug/kg
04021 SOIL S-5 1' 07/23/97	142881	8	E		<u> </u>	108	<u></u>	둞	1 00	49	2	8 0	30	E	064	6.4	. 15	28	904	7.8	330	*	8 36	30 6	줊	90	E	E	2	110	3		36	<u>-</u>	2800
SITE POINT SAMPLE DATE DEPTH MATRIX	W.C.C. (AB 1.0. #				*		ETER		¥					COPENE					OETHANE			ETHENE		AE			PROPLIKE						*		
5750-1-6800 ET 6800			BROMOF GRM	CAMBON TO PARTICULAR DE COMO D	DIBROMOCIAL DROME THAM	CHLOROF THAME	2-CHLOROE THYLY]NYLETHER		BRONDO I CHI, ORONE THANK	1,1-DICHLOROCTHAME	1,2-DICHLOROETHAME	1,1-DICH OROCTHEM	1,2-DICHLOROPROPANE	CIS-1,3-DICH, 090PR0PEKE	ETHYLDENZENE	BROKONE THANK	CHLORONE THANE	METHYLEM CALORIDE	1,1,2,2-TETRACHLOROETHANE	TETRACHLOROETHENE	IOLUEIK	TRANS-1,2-DICHLOROETHENE	I, I, 1-TRICH CHOETHANE	I, I, 2-TRICH, ORDETHANE	TRICK, OROETKERE		TTORANS-1,3-DICH OROPROPEM	SUTREME	CE TOPE		254 4 PARBON DISULTIDE	255 44-42-HEXANDNE	256 J. HETHIL-2-PENTANDKE	VINTL ACETATE	289 V XYLENES (101AL)
2 2 2		_		50%					-	214 V	215 4					28 A	-	-	>	_	⇒	 	-	<u>-</u>	> i	<u> </u>		-		I	Į	255	782	257 4	789 V

d) Results 86021 \$4021 \$511 \$711 \$712 \$72 \$7	142688 604, 5.8 ug/kg 804, 5.8 ug/kg 804, 5.8 ug/kg	8. 2. 2. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	5.8 8.5 8.8 8.8 8.8 8.8 8.8	BDL 5.8 ug/kg BDL 12 ug/kg BDL 12 ug/kg BDL 12 ug/kg BDL 5.8 ug/kg BDL 5.8 ug/kg BDL 5.8 ug/kg
Table 5-2 (Cont'd) Soil Volatile Organic Results SIE 8602 POINT SOIL SAMPLE 5-8 2'DUS DAIE 07/23/8' NAIRIX S	CMPO CL CMPO-DESC. V.O.C. LAB 1.D. # ***********************************	>>>>>>>	>>>>>>>	226 V TRANS-1,2-DICHE, ORDETHERE 227 V 1,1,1-TRICHLOROETHANE 228 V 11,1,2-TRICHLOROETHANE 229 V TRICHE ORDETHERE 239 V TRANS-1,3-DICHLOROPROPENE 230 V TRANS-1,3-DICHLOROPROPENE 231 V STYRERE 232 V ACETONE 233 V 2-BUTAMONE 234 V CARBON DISULFIDE 235 V A-KETANONE 235 V 4-KETANONE 236 V 4-KETANONE 237 V VINTL ACETATE

round. The results shown in Table 5-3 indicate substantial contamination by BNA chemicals. The BNA compounds detected most frequently and in the highest concentrations were (in decreasing order) pentachlorophenol, 2-methylnaphthalene, naphthalene, phenanthrene, and fluorene. Other BNA compounds frequently found, however, in somewhat lower concentrations, were acenaphthene, pyrene, fluoranthene, and bis(2-ethylhexyl) phthalate.

Soil sample location S-5 had the greatest total concentration of BNA compounds with 6,195,100 ug/kg (see Figure 5-5). concentration of PCP at this location was 4,500,000 ug/kg and constituted the greatest portion of this total BNA concentration. Soil sample location S-4 also had a significant total concentration of BNA compounds with 713,800 ug/kg detected at the 3-foot depth interval. These elevated concentrations occurred in and around the chemical storage tank area and reflect the contamination present in this area. Concentrations of BNA compounds at other soil sample locations on the site, although not as elevated as those previously mentioned, are significant and reflect the widespread contamination of soil on NWP property. Concentrations of BNA compounds at those soil sample locations not located in the area of the chemical storage tanks could be due in part to the saturation of soils from treated lumber stored in those areas.

Generalizations concerning the BNA analysis include a trend toward increased concentrations with depth, as was evident at those locations in which incremental samples were able to be obtained. PCP concentrations constituted the largest portion of the total BNA concentrations in all of the samples except S-1,

r.e. wright associates, inc.

																		ę,		÷ '						T.		*# - #								
						,			J vg/kg	23000 ug/kg	23000 ug/kg	J 49/kg	23000 ug/kg	3 ng/kg	23000 ug/kg	J ug/kg	23000 ug/kg	23000 ug/hg	23000 ug/kg	J 49/kg	23000 ug/kg	23000 ug/kg	23000 ug/kg	23000 ug/kg	3 ng/kg	23000 ug/kg	23000 ug/kg	23000 ug/kg	23000 ug/kg	47000 ug/kg	23000 ug/kg	23000 trg/kg	23000 ug/kg	23000 ug/kg	23000 ug/kg	23000 ug/kg
	86021	SOL	S-4 3	07/23/87	÷	8	142830		919	E	룗	3300	졻	3300	줎	3300	盒	Š	출	0099	\$	줊	줖	줖	<u>8</u> 2	Ē	Ē	줖	Ē	룗	룖	줊	롩	፳	룹 :	S
									3 ug/kg	3000 ug/kg	3000 ug/kg	3 kg/kg	3000 ng/kg	3 ug/kg	3000 ug/kg	J 44/49	3000 ug/kg	3000 ug/kg	3000 ug/kg	J ug/kg	3000 ug/kg	3000 ug/kg	3000 ug/kg	3000 ug/kg	3 ug/kg	3000 ug/kg	3000 ug/kg	3000 ug/kg	3000 ig/kg	7000 ug/kg	3000 ug/kg	3000 ug/kg	3000 ug/kg	23000 ug/kg	3000 ug/kg	3000 ug/kg
	12098	ii es	S-1 5,	17/23/87	~	8	142879	11 11 11 11 11 11 11 11 11 11 11 11 11	2600																											
				_					Jug/kg	22000 ug/kg	J 119/19	3 ug/kg	J ug/kg	J ug/kg	22000 ug/kg	J ug/kg	22000 ug/kg	22000 ug/kg	22000 ug/kg	J øg/kg	22000 ug/kg	22000 ug/kg	22000 ug/kg	22000 ug/kg	J 49/kg	22000 ug/kg	22000 ug/kg	22000 ug/kg	22000 ug/kg	44000 ug/kg	22000 ug/kg	22000 ug/kg	22000 ug/kg	22000 mg/kg	22000 mg/kg	22000 ug/kg
	12098	30 80 80 80 80 80 80 80 80 80 80 80 80 80	5-3 1.5	07/23/87	<u>.</u> 5.	S	142878	11	14000	Ē	780	7500	2400	4200	줎	82 7	3	를	සි	4 00	z	Ē	줊	줊	10000	叠	룚	폴	ਛੱ	Ž	룚	Ē	臺	줊	E	줊
Soil Base Neutral/Acid Extractable Results	121	×	_	187	<u>-</u>	53	,		•	훉	_	****	_		ş		훒	윷	ğ		윷	_	ट्ट	ş		Š	홄	홄	훓	鼍	ş	ş	훒	f. 1900 ug/kg	흜	윷
ractab]	98	3	S-3	07/23/		3	14287		62/4																											
id Ext				_		_			al/6n	14/6n	100/16	il/6th	og/k	0 ug/k	a/6n	a/6n G	370 ug/k	370 ug/k	370 ug/k	1/6a	370 ug/k	370 ug/k	370 ug/kg	370 ug/k	1/6n	14/6n	370 ug/kg	370 ug/k	370 ug/kg	750 09/4	370 ug/kg	370 ug/k	370 ug/k	370 ug/kg	370 ug/ki	1/60
ral/Ac	86021	SS	S-2 1	07/23/87	-	3	142876	44444	2400	730	2400	9200	4200	10000	3100	<u> </u>	e	8	ĕ	200	룚	蓋	喜	墓	9109	<u>89</u>	줊	8	줊	졻	8	줊	룖	륦	룚	06
ise Neut									D ug/kg	J ug/kg	ea/kg	0 ug/kg	113/kg	D ug/kg	ug/kg	D ug/kg						380 ug/ltg			eg/kg	ug/kg								380 ug/kg		
Soil Ba	86021	ᇙ	S-1 2'	29/62/20	5.	8	142875	11	9200	2	902	869	3400	2800	1700	283	룚	蓋	æ	270	\$	8	番	8	208	810	룚	晉	룚	ă	륦	æ	8	Æ	66	E
					_	_			390 ug/kg	390 ug/kg		390 ug/kg	J ug/kg	J ug/kg	390 ug/kg	J 09/kg				3 ug/kg	390 ug/kg	J ug/kg		390 ug/kg					390 ug/kg					390 ug/lig		J ug/kg
	12098	105	.90 15	28/91/20	Ū	ਲ	969111	11 11 11 11	305	200	90. 100.	5	150	330		330	藍	藍	Ē	280	8	120	36	306	130	708	66	904	906	2	8	5	로	¥G8	줊	₩
	SITE	THIOG	3 Talens	DATE	REPIN	HATRIX.	CHPO CL. CHPO-DESC. ACID EXTRACT/ BASE HEUT. LAB ID B		ACEMAPATHEME	ICEMAPH 1471, EME	LA TARACEME	BENZO(A)ANTHRACEME	BENZO(A)PYREWE	BEKZO(B)FLUGRAMTHENE	BEWZO(6,H,1)PERTLENE	BENZO(K)FLOORANTHENE	BIS(-2-CH, OROETHOXY)METHAME	BIS(-2-CHLORDETHYL)ETHER	31S(2-CHLORO1SOPROPYL JETHER	BIS(2-ETHYLHEXYL)PHTHALATE	I-BROMOPHEMYL-PHENYLETHER	BUTYL BENZYLPHTHALATE	?-CHLORONAPHTHALENE	4-EHLOROPHENYL-PHENYLETHER	CHRITSENE	DIBENZ(A, H)AMTHRACEME	,2-DICHLOROBENZENE	.3-DICHLORDBENZENE	*4-DICHLOROBENZENE	3,3'-DICH, OROBENZIDIME	DIETHYLPHTHALATE	DINETHYL PHINALATE	DI - H-BUTYL PHTHALATE	2,4-dimitrotoliene	2,6-DIMITROTOLUEWE	DI-N-OCTYL PHTHALATE
							TO GUILO	•	¥ 6 10*	402 B A	403 B A	<u>~</u>	-	407 B BE	<u>-</u>	-	60	5 0	412 8 8	8	418 4	415 9 8	416 8 2	_	8	~	8	-	-	<u></u>	424 B D	£25 8 0	426 8 0	œ	80	10 8 62)

r.e. wright as clates, inc.

Table 5-3 (Cont'd)	ase Meutral/Acid Extractable Results
•	Base Wet
	Soll

•	,				,									
	3115	120%	1209		7036		2008		252		2		200	
		1 55	S		돐		툸		둟		툸		툸	
	37dens	-90 IS	S-1 21		S-2 I		S-3 -:	ጭ	3.5		<u>S-1 5-</u>		3	
	111	07/16/87	07737117		78/67/50		03123187	C	CWEC		CHUCAGO	_	CHARACTE	
		•	,		-		-	•	3		•	•		
		5	, 5X		. 5		. 5		S		. 5		, <i>5</i>	
. T. B. T.	3530-0463 13 0463	;			!		t		Į.		3		1	
	ACID EXTRACT/ BASE WEUT, LAB 10 1	95115	1(2875		145874		145877	_	87874		142879		12880	
	医电子电子 医甲基氏性 化苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	11 11 21 11 11	11			,	11	••	100	1	11 12 13 13 13 13	,	11 11 11 11 11	;
-	FLUORANTHENE	150 3 mg/kg	<u>8</u>	61/60 0	8	63/63 0	3	5 /6 ·	3500	64/64 64/64	000	J 449/19	8	61/64 C
	FLUOREINE	ጀ	<u>\$</u>					£9/10		_	8			
#33 B	HEXACH DROBENZENE	累	Ē			370 Mg/kg	BSC 1900	8 0/Je		22000 trg/kg	ø	23000 ug/kg		23000 ug/kg
200	HEXACH, ORDBAITAD I FINE	BOL 390 ug/kg	藍					61/64		_	Z			
435 8	HEXACH ORDCYCLOPENTADYENE	BOX 390 Mg/kg	æ				_	wg/kg		_	훒			
æ	HEXACE DROETEASE	80f. 390 ug/kg	E				30. 190	61/6n		_	墓			
•	INDERIO(1,2,3-CD)PYREME	80t. 390 ag/kg	200	ug/kg				64/6A		_	臺			
	THE PROPERTY OF THE PROPERTY O	36	룖	360 sq/kg		370 uq/kg		W9/kg		_	ଛ			
8	NAPATIVA FIE	8	7700					K4/kg			3000			
9 97	MITOMOCHIPEME	Š	\$				BD 1900	Me/to			2			
	ELECTROCK LINE DONOVI ANIME	\$ \$	Ē					no/ka		27000 Ka/ba	2			
8 8	M-MILESON DE N'TROS IL MILES. MILESON DE MINISTER ANTIQUE IL	3	8				_	19/E			Ē			
B @	ATALINOSTA (MACHILANI)	5	100 t	EN/ED OOF		or/ca	2007				300			
		•	2000				200		22000	64/64	5	13/13	1400	ca/ma
.	PIREM.	• §	200				0001	2 J			3			
.	1,2,4-IMICHUMARCHICEM.	Š	5	980 kg/ kg			_	2			8			
æ .	1,2,3,4-TETRACHLOROBENZEME	1	€ ;		_			,			E 3			
æ	BENZYL ALCOHOL	Ē	E	380 ug/kg		370 ug/kg		<u>5</u> .			E 3			
æ	4-CHLORDANILINE	ž	툸				108	54/6A		22000 ug/kg				
	DIGENZOF URAN		9 9	ng/kg	<u>2</u>	mg/kg		89/kg			90	J 49/19		
	2-KETHYLKAPHTHALEME	S S	-		_	by/bn	8	ug/kg				on /on r		
	2-MITROAMILINE	<u>§</u>				00 mg/kg	906 9400	68/ga				63/6n noon21		
	3-HITROAMILINE	<u>§</u>				00 119/kg	907 - 108 108 -	mg/kg				20000 mg/Kg		
	4-Will Property Line	2					904.	61/67 17/11				61/68 mon21		
3	2-CIM ORIOPRE MOL	2 2		360 ug/kg		70 69/169	94 - 780 94 - 780	88/16 10/10		64/68 00077		23000 mg/mg		Saves may ke
	OU CAPTURE CALL CARONING MODE.					20 tag/kg						23000 ug/kg		
	2.4.4. 0.101 Ten-2-187 Ten Definition	3				00 ua/ka	26 × 26					20000 ug/kg		
3	Ans. A. D. A. D. INT. TRIPPER WOL	2	-			00 Mg/kg	801, 9400	14/pa				20000 mg/kg		
٩	2-#11R0PMF.#Q	33				70 wg/kg	BDL 1900	P4/P4				23000 kg/kg.		
Ĵ	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2				00 mg/kg	BOL 9400	ug/kg				120000 ug/kg		
	4-CH ORD-3-NETHYLPHEMOL	£				70 ug/kg	BOL 1900	ag/kg				23000 kg/kg#		
		-			_	D ug/kg	130000 D	ug/kg			270000			
		2				170 ug/hg	BOK 1900	eg/kg			뜚			
) <u>=</u>	2.4.6-TRICH ORDPHENDL	£				170 ug/kg	801 1990	eg/fg			జే			
	2-INCTHIYL PYENOL					170 ug/kg	BDL 1900	eg/kg		_	爱	23000 trg/lig.		23000 mg/kg
622 A	4-METHYLPHEWDL	80t 390 ug/kg	爱	380 ug/kg		170 ug/kg	POL 1900	Mg/kg		22000 ug/kg	줊	23000 ag/kg	鼋	23000 ug/kg
625 A	BENZOIC ACID					. 64/60 00	BDL 9400	kg/kg		_	E			20000 ug/kg
_	2, 4, 5-TR I CHI, OROPHENOL			900 ug/kg	98	1900 ug/kg	80. 460	ug/kg	_	_	E	120000 ug/kg		20000 asq/kg
						•								

r.e. wrightassociates, inc.

	Results
(Cont'd)	Extractable
Table 5-3	Neutral/Acid
	Base
	Soil

	S115 860	86021 S011	5048		86021 S011		86021		86021		66021		12098		
\$		<u> </u>	S-6 I		5-7		5-7 2		5-7 3°		S-8 17		S-8 2'		
	8	(8)	9/62//0		9/23/8		03/23/87		17/23/87		07/23/87		07/23/87		
		<u>-</u> 8	ص تح.		- v		. 3		. S		<u>-</u> 9		₹. 5		
CHPO CL CHPO-0ESC									3		1		3		
ACID EXTRACT/ BASE NEUT, LAB 10	982)1 1 01 8	_	142682		142883		142881		142885		142886	r	142887		
	11 11 11 11 11 11 11 11 11 11 11 11 11		***		#		## ## ## ##		11 11 11 11 11 11 11 11 11 11 11 11 11		!! !!				
	73000	_	ē		텶	380 ug/kg		g/kg		90 ug/kg	\$	790 ug/kg	9019	61/6a	
402 B ACENAPHTHYLENE	88	36000	蓋		哥	380 ug/kg	ş	g/kg		90 ug/kg	륦	740 ug/kg	8	790 ug/kg	
	17000	<u>-</u>	Ē		\$	~	8	a∕kg			뚌		3200	ug/kg	
a	920	<u>-</u>	3500		2	J ug/kg		g/kg			8 500	0g/1g	870	ug/kg	
	<u> </u>	36000	를	24000 ug/kg	<u>8</u>	J wg/kg	8	g/kg			26 26 26 26 26 26 26 26 26 26 26 26 26 2	64/60	6200	og/kg	
~	7200	_	964	ug/kg	29		-	g/kg			<u>8</u>	D ug/kg	10000	ug/kg	
&	100	36000	Ē	24000 ug/kg	\$	_	8	3/kg	٠.		238	64/68	2100	eg/kg	
~	7200	~	490	ug/kg	€		~	g/kg				O ug/kg	900 <u>0</u>	69/fg	
-	900	36000	룚		돌	몷	暑	3/kg				790 ug/kg	\$		
~	2	36000	叠		8	曩	Ş	g/kg				790 ug/kg	륦		•
	盏	36000	룚		盘	暴	울	g/kg				790 ug/kg	蠹		
~	34000	•	5,00		1600		_	g/kg				ug/kg	2 98		
<u>.</u>	E	36000	Ē		8	룷	동	3/kg	-		줊		8	790 ug/kg	
-	1500	• •	E		를	윮	8	g/kg			凫		줊		
8	TEGE ,	36000	룚		8	暴	暑	3/kg			ž	790 ug/hg	롩		
~ ~	E	36000	鼍		8	몷	8	g/kg			룚		줊		
<u> </u>	0071	36000	969		23	_		3/kg			830	ed/ga	8	64/6a	
ළා ගෙ		36000	意		룚	묽	ş	g/kg				ug/kg			
- ·		9696	출 :		를		3	5 <u>/</u> 6	-			790 ug/kg			
		36000	\(\frac{1}{2}\)		E	暴	2	£ 6				790 ug/kg			
		900%	출		룶	8	8	3/tg				790 ug/kg			
Ф	8	72000	륪		藍	2	8	g/kg			_	69/68 009			
-	200	34000	ē		æ	8	Ş	g/kg	-			790 ug/kg			
—	25	t 36000 ug/kg	2	24000 ug/kg	藍	360 ug/kg	8	ug/kg				790 ug/kg			
<u> </u>	8	36000	ē		270	_	8	g/kg				790 ug/kg			
<u>~</u>	8	36000	E	24000 ug/kg	趸	윷		9/kg	層	390 ug/kg	륦	790 ug/kg	줎	790 ug/kg	
~		t 36000 ug/kg	8	24000 ug/kg	룛		ŝ	19/kg				790 ug/kg			
429 B DI-N-OCTYL PHTHALATE	&	1 36000 ug/kg	鬞	24000 ug/kg	26	J wg/kg	801. 1900 us	9/ k g				790 ug/kg			

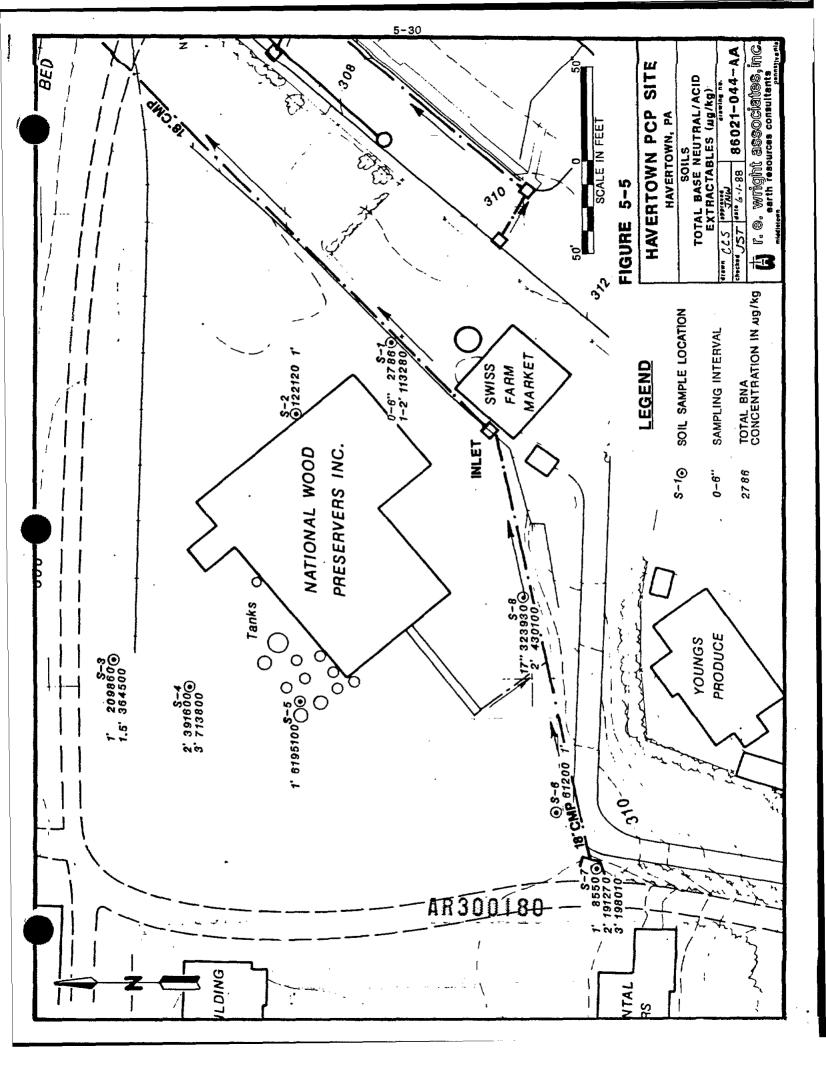
9
C
_
-
D
Ø
@
669
-
46
ಅ
0
60
Z
මා
-
E
8
_
6 0
~

					Page	5-3 (Page 5-3 (Cont'd)									
		;	ស	11 Ba	Soil Base Neutral/Acid	1/Acid	Extractable Results	aple	Results				٠			
		12091 Call				70°5			K: =			1202	- .	1205		
		3 -				1 -		3	£ 7	ž ;		3	، د	3		
	SAWATE.	5-3 L	-	1976		7-7-E		.7 /-S	t. •	5-7 3 69 523 69		/ - S		2-8-5		
				-		-		6	. =	10/07/14		107110	••	/1/57//		
	I KI W	. 7		. 3		. 53			, 9	. F		≥ 5	•	, 5		
25	3530-0453 13 0453							•	ł	•		•		3		
	ACTO EXTRACT/ MASC MEUT. LAG TO D	142481		142842		17883		12 mg		12885		112001		17967		
	15 14 14 14 14 14 14 14 14 14 14 14 14 14	****		******) i) ii										
5	FLUORAMINEME	30000	Wg/kg	\$	J Mg/lg	2) #9/kg	3	J #9/hg	22	1 mg/kg	30000	ea/ka	37000	5	/kg
267	FLUORENE	120000	MA/N	~ 절	_	\$		臺	_	22		죭	750 mg/ls	8	3	64/5a
(33 B	HE XACIA CADDENZENE	BOL 34000				臺		ž		爱	390 eg/kg	2		2	2 2	way/kg
434	HEXACIALOROBUTADI EME		_	2 2 2 3				룗		룶	3% Eg/Eg	2		젍		/kg
435	HEXACHILDROCYCLOPENTADIENE		-	., E		臺		臺	1700 Kg/kg	Z	340 mg/fg	e E	790 Mg/kg	蓋	圣	61/S
# 9C+	PEXACH, ORGETHANE	BOL 36000	_	~ \$	11000 mg/kg	٠.	380 mg/kg	줖	_	2	370 49/14	蓋	710 Mg/kg	富		#4/6#
437 8	INDENO(1,2,3-CD)PTRENE	90098 39000		 至	\$4000 ug/kg	23	J Mg/kg	蔔		효	390 ug/kg	230	Mg/kg	2300	ŝ	/kg
# E	ISOPHORONE	9007 39000	_	, E	\$4,600 000%	 S	380 ug/kg	훒	1900 ug/kg	죭	370 mg/kg	曼	790 ug/kg	2	圣	
£39 B	MAPPINAL EME		_	2		\$	Mg/kg	2190	64/6m Q	0000	20 Mg/kg	<u>=</u>	ug/kg	7300	2	/lg
# 0 1	MITROBEMZENE	3600						륦	1900 ug/kg	ਛ	390 wg/kg	爱	足	Ē		/kg
442 8	M-M 18050-01-H-PROPYLANIME							蠹	1900 ua/ka	8		蓋	2	훒		7
E	M-MITROSODIPAGATLAMINE(II)	801. 36000		200	24000 ug/kg	2	380 ug/hg	富	1900 89/89	훒	390 kg/kg	줖	790 ug/kg	롩	2	10g/1g
44.8	PAETAMITEREME			_		_		2200		25		21000	8	36000		/kg
45 B	PYSEE	28000	ed/en	3000	J ug/kg	٤	J eg/kg	1200) 49/kg	8	J 169/16	32000	6	30000	6	rg/kg
8 9 7	1,2,4-TRICH GOBERTER	BDL 36000	_		24000 ug/kg		380 ug/kg	Ē	1900 ug/kg	줊	390 119/19	2	是	蓋		eg/kg
\$\$ 8	1,2,3,4-TETRACH,ORDBENZEME				1000 ug/kg			*		₹		₹				ļ
474 B	BENZTI. ALCOHOL				24000 ug/kg		380 ug/kg	富	1900 ug/kg	훒		蠹		줊		/kg
475 8	4-CHLORGAMILINE	BDL 36000			11000 ug/kg	æ		를	<u>\$</u>	99	390 ug/lg		_	줊		teg/kg
476 B	DIDENZOFURM	71000			24000 ug/kg			970	_		390 ug/kg		790 ug/kg	鼋	多是	ng/kg
477 8	2-INETHITIMAPHTHALENE	f 900059	_		24000 ug/kg	_		98600		_		9		_		ug/kg
478 B	2-NITROANILINE	_			20000 ug/kg		900 ug/kg	Ē	92			牽			출 8	£,
479 B	3-NITROARILIME				20000 ng/kg	_	900 ug/kg	富	9	륦		중 :	4000 mg/kg	E	5 8	5.
多	4-MITROANILINE	_			20000 ug/kg	-		륜	8		2000 usp/kg	E			돌 왕	<u>.</u>
9	2-CH OROPHEMOL				24000 ug/kg			E	₹.		390 49/19	蓋 名	790 mg/kg		5 : E :	5 1
200	2,4-UICR, UKUPR, MU.				24000 US/ Kg			3 2	9		370 US/R9	3 8	20 00 00 V			517
F 7	2,4-UINCHITICHEMU. A.A.DIMITOO.O.MCIUM SACADA	BOY SEVOU	e4/20	2 2 2 3 3	24000 49789	¥ &	380 mg/kg	i i	1700 UG/KG 9700 mg/kg		29'0 ug/ kg 2000 im/kg	E	/70 LEG/RG	2		es/se
4	5 Zenitopoem				120000 mg/kg			.	9700		2006 Bra/fra	8	4000 ua/te		90	-
¥ 909	2-TEMPHERO	•							98	5	390 ug/kg	8	790 ug/kg		730 259	- Fe
¥ (0)	A MITOROPICAN	-				. –		歪	926		2000 ua/ka				900	/kg
•	A COLUMN - 2 - NOTHER DATES.	_				-		E	9		390 uq/kg	盖	7% ug/kg	蓋	2	<u> </u>
•	PERTYCH DODGE BO				_			32000	_	_	O ug/kg	-		_	8	/49
•		00096 3000			24000 ug/kg		380 uq/kg	藍	<u>\$</u>	8	390 ug/kg		740 ug/kg	藍	星	/kg
₩ 119	" Zinite-TRICH OROPHENOL							幺	8	蓋	390 ug/kg	줊	790 ug/kg	畜		₩ /#d
. 620 A	一を出ている。			906		_		臺	1900 ug/kg	200	390 ug/kg	蠹	790 ug/kg	至		/kg
622 A.	C-WETHYLPHENOL				_			줊	1900 ug/kg	줊		줖	_	藍		/kg
625 A	BENZOIC ACIO				120000 ug/kg			薑	_	Ē	_	쿒	4000 ug/kg	盈	8	ag/kg
626 A	2,4,5-TRICHLOROPHENOL	BDC 180000		BOL 12	120000 ug/kg	五	1900 ug/kg	至	9700 ug/kg	룚	2000 ug/kg	윮	4000 ng/kg	Τ.	_	eg/kg

r.e. wright associates, inc.

Extractable Designer	105	diu. 2 8-5	07/23/87	2'	8		142888	# # # # # # # # # # # # # # # # # # #	\$500 ug/kg	BOL 790 ug/kg	2200 ug/kg	10000 ug/kg	7200 ug/kg	12000 ug/kg	2400 ug/kg	12000 ug/kg		£	8DL 790 ug/kg	_	£	_	٤	2	11000 ng/tg	1400 ug/kg	80t 790 ug/kg		BOL 790 ug/kg	2			ጀ	2	운	BDL 790 ug/kg
Soil Base Neutral/Acid	TNIOG	3,4MPL	DATE	H1d30	MAIRIX	CHPD CL CHPD-DESC	ACID EXTRACT/ BASE MEUT. LAB ID B		401 B ACEMAPHTHENE	402 B ACENAPHTHYLENE	403 B ANTHRACENE	_	406 B DEMZO(A)PTRENE	407 B BENZO(B)FLUORANTHENE	408 B BENZO(G,H,1)PERYLENE	409 B BENZO(X)FLUORANTHENE	410 B BIS(-2-CH, OROETHOXY)METHANE	411 B BIS(-2-CHLOROETHYL)ETHER	412 B BIS(2-CHLOROISOPROPYL)ETHER	413 8 BIS(2-ETHYLHEXYL)PHTHALATE	414 B 4-BROMOPHEMYL-PHEMYLETHER	415 B BUTYLBENZYLPHTHALATE	416 B 2-CHLOROMAPHTHALENE	8	418 8 CHRYSENE	419 B DIBERZ(A,H)AMTHRACENE	420 B 1,2-DICHLOROBENZENE	421 8 1,3-DICHLOROSENZENE	422 8 1,4-DICHLOROBENZENE	423 6 3,3"-DICHLOROBENZIDINE	424 @ DIETHYLPHTHALATE	425 8 DINETHYL PHYNALATE	426 8 DI-M-BUTYLPHIHALAIE		æ	429 B DI-N-OCTYL PHTHALATE

Table 5-3 (Cont'd)


Table 5-3 (Cont'd)
Soil Base Meutral/Acid Extractable Results

84021 SOIL S-8 2'004 07/23/87 2' SG	142948	35000 D 69/kg 8900 e4/kg	. 是	80L 790 ug/kg	80t, 790 ug/kg 2800 ug/kg	730	790	2	31000 D 49/kg		BDL 790 ug/kg	BDR 790 cq/kg	ጀ	3500 0000 3800 0000	\$ BOL 4060 49/kg	3 2	2	804, 770 ug/rg 804, 4000 ng/ka	9	33	8	٤'	PYVOOD U 69/Kg	E	2	是	4000	BOL 4000 ug/kg
	LMTD LL LMTD-DESC. ACID EXTRACT/ BASE MEUT. LAB 10 #	43) B FLUORANTHEME	•	434 B. HEXACHLOROBUTADIEME. 435 B. HEXACHLOROCYCLOPENTADIEME		00.0		— :	443 B M-NITROSOOIPHENTLANINE(1) 444 B PHENANIERESE	-		456 B 1,2,3,4-TETRACHLOROBENZEWE 474 B REMIYI ALCOHO	8 4-CH.0	476 B DEBENZOFURAN	 6	400 B 4-RIIROMRILIM. 601 A 2-CE 080PEND.	2	603 A 2,4-0;PETHYLPHEHOL And A 4.4-0]HITPD-2-PETHYLPHEHOL	. 4	₹ •	~	•	609 A PERIORIA URUPHERU.	E 4	-	•	•	626 A 2,4,5-IRICHLOROPHENOL

AR300179

inc.

r.e. wright as

S-6, and S-7. Also, PCP concentrations increased with depth as was evident at soil sample locations S-4, S-7, and S-8.

5.2.3.4 <u>Pesticides and PCBs</u> - Pesticide and polychlorinated biphenyl analyses were performed on soil samples collected from eight locations at NWP during the preliminary sampling round. The results shown in Table 5-4 indicate that PCB-1260 was detected at a depth of one foot in soil sample S-2 at a concentration of 1600 ug/kg. This sampling point was located on the northern building face of the wood-preserving plant and was the only sample in which PCBs were found above detection limits.

Beta-BHC and chlordane were the only pesticides which were detected in soil samples at NWP. Beta-BHC was detected at soil sample location S-3 at depths of 1 foot and 1.5 feet, at concentrations of 660 ug/kg and 1300 ug/kg respectively. Chlordane was detected at soil sample location S-8 at depths of 17 inches and 2 feet at concentrations of 1000 ug/kg and 1200 ug/kg. The approximate locations of these soil samples are shown on Figure 5-6.

5.2.3.5 <u>Cyanide and Oil and Grease</u> - Soil samples were analyzed for cyanide and oil and grease. The results of these analyses are provided in Table 5-4. Cyanide was not detected in any of the samples.

Concentrations of oil and grease were detected in every soil sample, with the highest concentration, 560,000 mg/kg, detected in soil sample S-5. Soil sample S-5 was collected in the storage tank area situated on the west side of the wood-preserving plant. This area was highly saturated with oily fluids, which either are or were stored in the tanks. As would be expected,

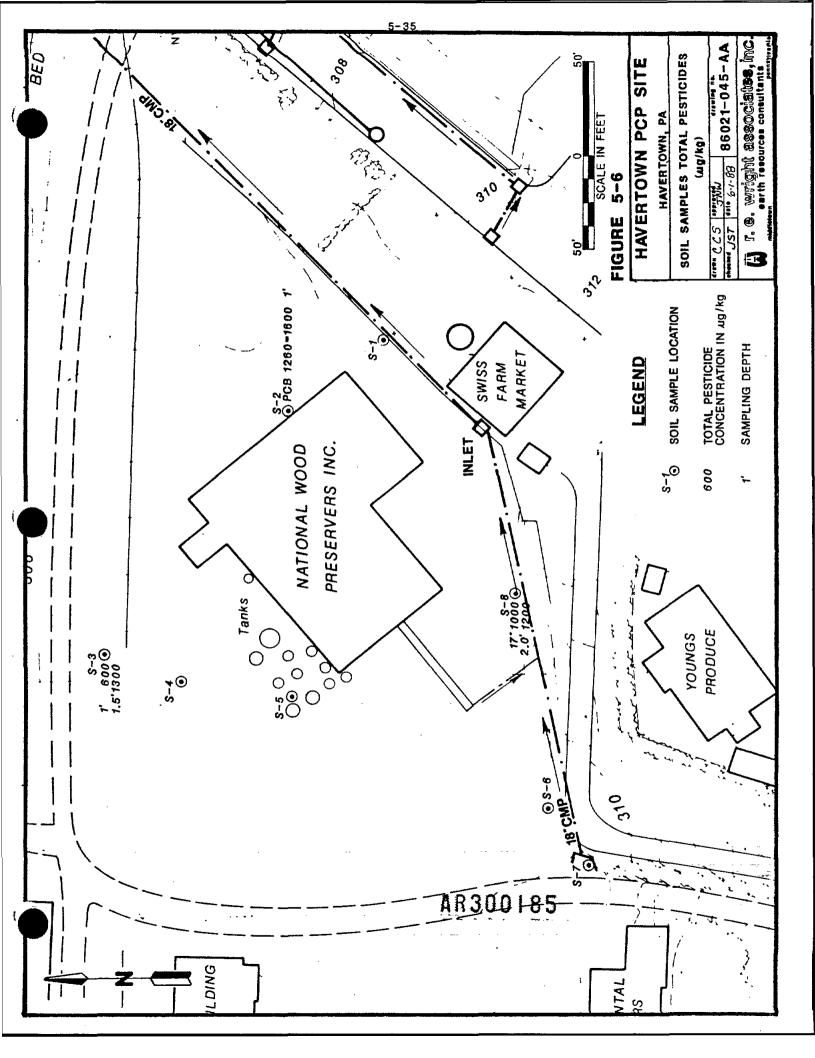
r.e. wright associates, inc.

							9	table 5-4								
				Soll P	sticid	Soil Pesticide/PCB and Oil and Grease and Cyanide Results	d 011 i	and Grea:	se and	Cyanide	Result:	go.				
		SITE	86021		15098		86021		88021		86021		86021		12098	
		FUND S	15. c				2 2		1 5	٠	3 S		, .		≓ ;	
		DATE DATE	07/16/87		07/23/87	9	07/23/87	=	07/23/87	, 6	07/23/87		07/23/87	_	07/23/87	
		MIG30	0 5		~ 5		= . 5		<u>-</u> 5		.s. 5		~ 5		2	
3 Odis	CHPO CL CMPO-DESC	# H H H	8		3		8		3		8		3		7	
	PESTICIDE/ PC	PESTICIDE/ PCB'S LAB 1.0. #	141496		142875		142876		142877		142878		142879		142880	
		电影 化苯基甲基苯基甲基甲基甲基甲基苯基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	** **			111						•		:		;
2 3	_		#	61/6a 4		7.1 09/19		50 J	 5 2	130 Mg/Kg	E 8		E 3	140 ug/kg	E	140 49/19
707	_		5			7.1 U3/RG	3 8	33 48/49		94/50 OCT	3 5	61/6m GC1	e s	140 897 119	E 8	61/6m 0+1
7 207	OEIR-OHC		100			7.1 UU/19 G 1 m/ho	_	35 an/le	_	130 mg/ay	<u> </u>	126 km/kg	<u> </u>	140 497 49	1 8	140 49/19
100			300	64/60 v		2 1 12 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1		24/20 25	1 2	170 00/40	ź	24 66 661 147 111 661	g g	14/ Fin O41	4 5	14/50 OF
707					ž &	91 mg/kg		350 no/kg		1300 teg/10		130 ug/19	e e	1400 mg/kg	5 5	140 00/10
4 (82			ž E	18 un/ha	E	10 mg/kg		71 110/40		70 mg/hg	4 2	770 ng/kg	3 2	280 Mg/kg	Ē	280 tra/fin
92			E	18 mo/to	8	18 no/kg	.	71 ua/ta		270 ua/ka	ž	270 ua/ka	Ē	280 na/ka	ž	280 mg/kg
200	-		8	18 mg/kg	\$	18 mg/fra		71 mg/hg		270' ma/ka	Ē	270 Ha/ka		280 ue/kg	æ	280 ua/ka
710 P			108	18 uq/kg	룚	18 ug/kg	Ē	71 ug/kg	100	270 ug/kg	줖	270 ug/kg	蓋	280 ug/kg	喜	280 ug/kg
711 P			89	9 ug/kg		9.1 ug/kg	盏	35 ug/kg		130 mg/kg		130 ug/kg	鼋	140 ug/kg	蓋	140 ug/kg
712 P	_		B 0	18 ug/kg		94/6n 8t	906	71 ug/kg		270 ug/kg		270 ug/kg	둂	280 ug/kg	줊	280 ug/kg
713 P	ENDOSULFAM SULFATE		108	18 ug/kg	叠	18 ug/kg	80 t	71 ug/kg		270 ug/kg		270 ug/kg	ē	280 ug/kg	줖	280 ug/kg
714 P	ENDRIN		B 0f	10 ug/kg	魯	18 ug/kg	쿒	71 ug/kg		270 ug/kg		270 ug/kg	줊	280 ug/kg	줊	280 ug/kg
715 P	_		¥.						80 23	700 ug/kg		2700 ug/kg	喜	2800 ug/kg	줊	2800 ug/kg
716 P	PEPTACHLOS		168	9 ug/kg		9.1 ug/kg		35 ug/kg		130 ug/kg		130 ug/kg	줊	140 ug/kg	줊	140 mg/kg
717 9			108	9 ug/kg	æ	9.1 ug/kg	룖	35 ug/kg		130 ug/kg		130 ug/kg	Ē	140 ug/kg	룚	140 vg/kg
718 P			108 100			91 ug/kg		350 ug/kg		300 ug/kg		1300 ug/kg	텶	1400 ug/kg	Z	1400 ug/kg
719.0					2			710 ug/kg		700 ug/kg		2700 ug/kg	Æ	2800 ug/kg	줊	2800 ag/kg
					E 8	91 trg/kg	a	350 ug/kg	三 S	1300 ug/kg	E	64/6n 0001	E	1400 ug/kg	률 :	1400 ug/kg
7.27			J 10		E	69/69 F				300 119/119		1300 ug/11g	E &	1400 ug/kg	差	1400 trg/Rg
א קיני א קיני	PUB-1248		2 E		E 8	71 09/19		330 UQ/#G	2 2	1300 ug/kg	1	1300 09/49	E	1400 ug/ ng	5 8	1400 mg/ Hg
4 527			E &	64/65 PG	5 8	100 ug/ rg		ug/mg		51/5n 00/7		61/6n 00/7	3 8	64/60 0097	5 3	7600 mg/kg
775 P			.	180 no/kg	ž 2	180 mg/kg	1 2	210 ug/kg		2700 mg/kg		2700 mg/kg	E	2800 uo/to	E	2800 us/kg
7%	_		.		E	91 m/kg		350 no/ho	-		d &	1300 no/ka	Ē	1400 ug/hg	2	1400 ug/kg
739 P	_		168		岳			710 ug/kg	SE SE		a	2700 ug/kg	E		둞	
	9 1 710	OIL & GREASE LAB TO #	141508		142930		142931		142932		142937		142941		142942	
			#1 #4 #4 #4 #4 #4	,			11	,	111111111111111111111111111111111111111			•		,		,
1033 C	OIL AND GREASE		3800	mg/kg	2300	£d/kd	8500	64/6 4	26000	64/64 64	24000	64/64 104	2000	11/61	34000	mg/kg
	Ā		*****		14861		, 200		. 4041				00000		010011	
	R		910141		COKZHI		142708		14670/		1600		146707		14271	
7 0001	Z		9		60		ā		8		5		Ĝ		3	
0001			8		6		₹,		b		=		ò		5	•
	0		141516		142905		142906		142907		142908		142909		142910	
	1				*****		**		1) 1) 1) 1)				11););););	
1001 C	Software :		BDL 0.	0.57 MG/KG) 108 (BOL 0.57 NG/KG	90,	BDL 0.55 MG/KG	80. 0.	BOL 0.56 MG/KG		0.55 H6/KG	줊	0.57 MG/KG	Ē	0.6 MG/KG
,	}2															

Table 5-4

. • ·

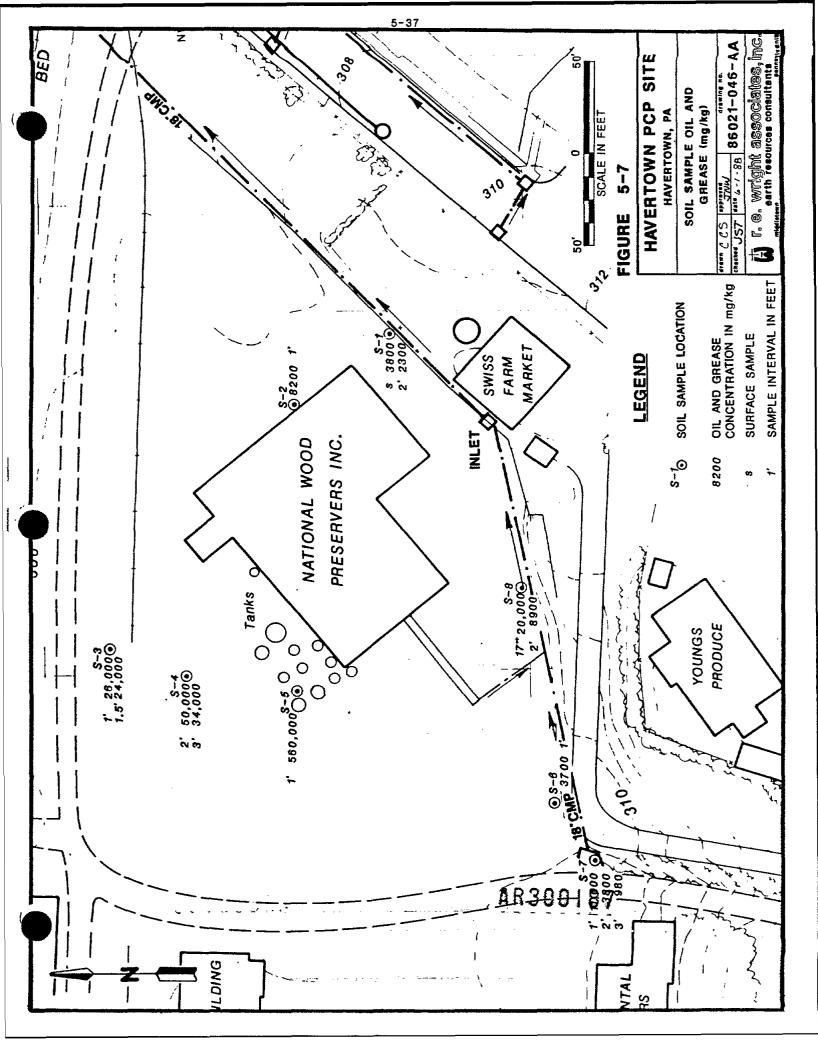
Table 5-4 (Cont'd)
Soil Pesticide/PCB and Oil and Grease and Cyanide Results


64021 S011 S-9-2' 2' S0723/87	142887 ====== 194/49 196/49 197/49	142952 142917 142917 142917 142917 142917 142917 142917
05. 28/62/10 28/62/10 1105 1105	25835 2607	142951 20000 142916 87 142916
86021 5912387 8773387 80773887	801. 18 ug/kg 801. 37 ug/kg 801. 37 ug/kg 801. 180 ug/kg	142949 142915 142915 142915 142915 142915 182822 1801 0.59 MG/KG
86021 \$011 \$-7 2' 07/23/87 \$0	801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 73 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49 801. 36 49/49	142948 3800 ng/kg 142914 86 142914 801 0.58 NG/KG
86021 5011 5-7 11 60 8-7 11 80 90	601 35 ug/kg 601 71 ug/kg 601 710 ug/kg 601 Ug/kg 601 710 ug/kg 601 Ug/kg 601 Ug/kg 601 Ug/kg 601 Ug/kg 601	142947 ====== 11000 mg/kg 142913 ====== 85 142913 ====== 8DL 0.59 M6/KG
6	150 ug/kg 150 ug/kg 150 ug/kg 150 ug/kg 150 ug/kg 270 ug/kg 150 ug/kg 1500 ug/kg 1500 ug/kg 1500 ug/kg 1500 ug/kg 1500 ug/kg 1500 ug/kg 2700 ug/kg	#9/kg 0.59 HG/KG
86021 50H 10-S 1-9-S 1-1 50	870 ug/kg 600, 870 ug/kg 870 ug/kg 870 ug/kg 800, 870 ug/kg 870 ug/kg 870 ug/kg 870 ug/kg 1700 ug/kg 1700 ug/kg 1700 ug/kg 1700 ug/kg 870 ug/kg 880 ug/kg 880 ug/kg 880 ug/kg 870 ug/kg 880 ug/kg 880 ug/kg 880 ug/kg 880 ug/kg 870 ug/kg 880 ug/kg 88	142946 ====== 84/kg 3700 142912 ===== 84 142912 142912 ====== 0.9 MG/MG 801.
86021 \$010 \$-\$ 1' 07/23/87	18 11 12 12 12 12 12 12 12 12 12 12 12 12	142944 560000 142911 55 55 801
S11E POINT SANPLE DARE DARE DREIT ORBETT CAPO CL CAPO-DESC	PESTICIOE/ PCB'S LAB 1.0. 4 ALPHA-BHC P GAWIA-BHC P G	1003 C CYMIDE 1001 C CYMIDE 1001 C CYMIDE
CKPO	707 P	3 1001 3 0801

r.e. wright associates, inc.

Table 5-4 (Cont'd)
Soil Pesticide/PCB and Oil and Grease and Cyanide Resuits

84021 S91L S-8 2'100P 07/23/87 S0	142888 ======= BDL 93 wg/kg BOX. 93 ug/kg	E E E E E	801, 180 89/19 801, 180 89/19 801, 180 89/19 801, 180 89/19 801, 180 89/19 801, 93 89/19		142953 142918 142918 142918 142918 142918 142918
SITE POINT SAMPLE DATE DATE POINT SAMPLE DATE THE SAMPLE THE SAMPL	PESTICIOE/ PCB*S LAB 1.0. # **********************************		P 4,4"-DBD P ALPIA-ENDOSULAN P ENDOSULAN P ENDOSULAN P ENDOSULAN P ENDOSULAN P ENDOSULAN P ENDOSULAN	717 P MEPINALIUR EPORIUE 718 P PCB-124 720 P PCB-1221 721 P PCB-1232 722 P PCB-1248 723 P PCB-1248 723 P PCB-1016 725 P TOTAPHENE 725 P TOTAPHENE 725 P EMDRIN KETONE	1033 C 011 AND GREASE 1080 C PERCENT SOLIDS 1001 C CYANIDE


r.e. wright as ociates, inc.

concentrations of oil and grease were greater in samples collected near ground surface and decreased in samples collected at increasing depths. The results from the oil and grease analysis indicate that an oil product was introduced to the soils on NWP property. The approximate sample locations and oil and grease concentrations are shown in Figure 5-7. Due to the nature of the sampling and the small number of sampling locations, interpretations regarding zones of contaminant concentration could not be made with any reliability.

5.2.3.6 <u>Dioxin and Dibenzofurans</u> - Soil samples were collected at eight locations on the NWP property and analyzed for dioxin and chlorinated dibenzofuran isomers by California Analytical Lab, under the direction of EPA. Soil samples were to be collected at the surface, one foot, two feet, and three feet; however, due to the nature of the fill at NWP, it was not possible to collect soil samples at the desired depths at every soil sample location.

Tetra- through octa-isomers of dioxin and dibenzofuran were detected at various concentrations at each of the soil sample locations, with the results shown in Tables 5-5 and 5-6. Figure 5-8 shows soil sample locations and total concentrations of dioxin isomers, and Figure 5-9 shows the total concentration of dibenzofuran isomers. As shown by Figure 5-8, soil sample S-5 had the highest relative concentration of dioxin isomers, with 39,318 ppb detected at a depth of one foot. Soil sample S-5 was collected in the area of the storage tanks, where an oily fluid was readily obvious after penetrating the soil. The octa-dioxin isomer was detected in the highest concentration and made up the majority of the total dioxin concentration found at S-5, with a level of 30,579 ppb. By referring to Figure 5-9 at can be seen

80L 2.7 2.7 80L 35.3 3.5 14.8 7.5 283 407

r.e. wright as Dolates, inc.

	86021 S-5 30892-24 9-12-87 (1')		80t 0.45 ppt 80t 0.45 ppt 80t 2.1 ppt	₽.	
	64021 S-4 30892-16 9-11-87 (3")		801, 0.043 ppt 801, 0.034 ppt	-	
	84021 5-4 30892-25 9-12-87 (2°) S0		80t. 0.34 ppt 80t. 0.3 ppt 6.75 ppt		
Dioxin Results	86021 S-3 30892-15 9-11-87 {1.5'}		80t 0.033 ppt 80t 0.11# ppt 1.4 ppt		
Soil Diox	84-213 8-30832-18 1-11-87 (11)		BDL 0.068 ppt BDL 0.071 ppt i A		
	66021 5-2 30892-17 9-11-87 (0*)		90t 0.02 ppt 0.077 ppt		
	84021 S-1 90892-19 9-11-87 (0°)		0.016 ppt 0.036 ppt 1.5 ppt		 -
	SITE: POINT: LAB TO 4: 6C/NS DATE: DEPTH: MATRIX:	COP KANE	1000 2378 1000 5-790	123478 HxCD0 123678 HxCD0	1234678 HpCD0 0CD0

AR300188

(3# E)

r.e. wright associates, inc.

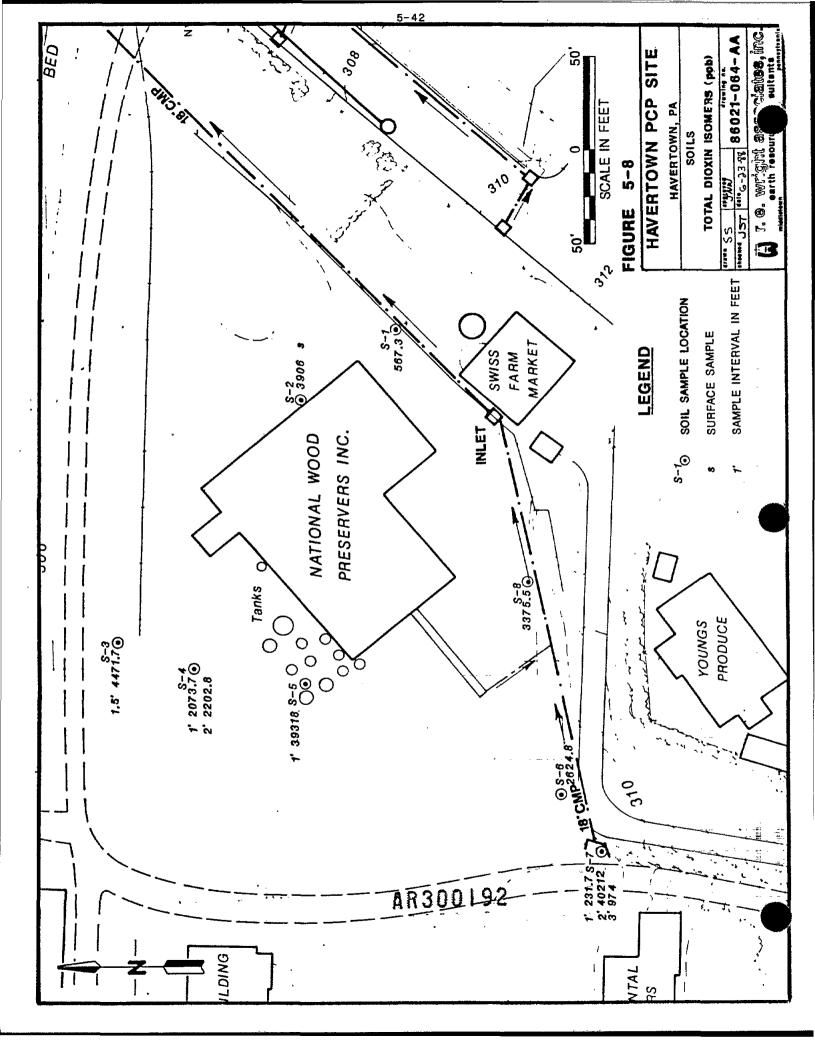
t'd)	Results
Table 5-5 (Cont'	Soil Dioxin Res

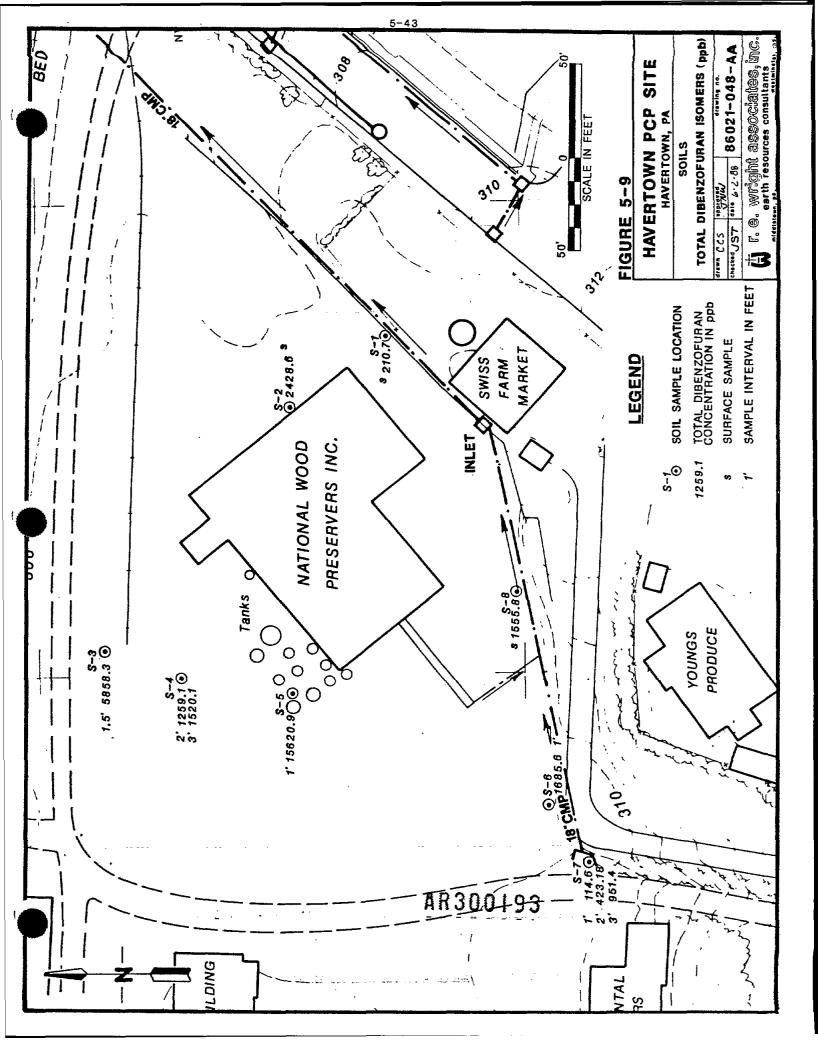
7	511E: 86021 POINT: S-6 LAB TD 4: 30892-22 F/MS DATE: 9-12-87	3 2 2	36021 3-7 30892-14 3-11-87	<u>፠</u> ሉ ጅ ቀ	36021 5-7 30892-21 3-12-87	,,,,	86021 5-7 30892-20 9-12-87		86021 5-8 30892-23 9-12-87
5		(==		. Ξ	2.) 20		(3.) (3.) (3.)	-	(S)
COP HANE									
1000	0.063 ppt	_	022 ppt			108	0.029 ppt	줊	~
2378 TCD0	tdd	_	0.013 ppt	_	0.026 ppt	<u>8</u>	0.024 ppt	0.21	
PACED	16	0.20	ppt	0.81	ŧ	90.0	ŧ	æ.	
2378 PnCD0	1.1 ppt	0.12	ĕ	67.0	T S	 	ž	5.	
HICOO	te.	=	pot	48.7	ž	8:=	ĕ	2	
	ă	0,3	줖	2.3	Pot	0.78	鼋	#: #:	
123678 HrCDD	ž	1.2	줖	29.9	tok M	6.3	ě	79.6	
	ž	0.62	훒	5.2	둁	Ξ	t B	82	
HPCDD	ide	ಜ	줊	797	ĕ	107	ğ	2	
4678 HpC00	逶	39.°	훒	111	Pot	162	ĕ	627	
0000	ĕ	2	琶	27.25	ã.	\$89	id d	262	

r.e. wright as ociates, inc.

	Results
Table 5-6	Dibenzofuran
	Sol1

SIIE:	1978	21	2	1001	95	6 02.		\$507		P4021	.09B	2		1709
	<u>ڄ</u>	_	<i>-</i>	7-1		5-3		S-3		7.5	Š	_	S	Ş
: S S :	7000 N	45-19	Š	30692-17	***	25-2-28		30892-15		30492-25	S	12-16	c,	0892-24
SCAS DATE:	<u>-</u>	1-87	<u>.</u>	78-1	•	-11-97		9-11-67		9-12-87		29-1	•	-13-01
	9		3	 	_	Ξ	_	(1.5*)		(5,)	(3	_		Ξ
, PARTIEX:	JON .	8	•	5 2		3		S		8	, os	S		8
SANNE GOD														
1505	0.32	ž	0.22	ĕ	0.51	ž	0.34	ž	2	0.24 ppt			200	1.3 ppt
378 ICOF	0.019	至	0.26	ž	0.0	昱	0.055	ž	藍		80°0 0'03	_	藍	1.2 ppt
Price	5.2	Ē	- <u>.</u>	ğ		Ē	4.2	ž	~				둂	호 ~
178 Pincof	0.13	훒	2.5	ě	0.4	藍	0.31	ž	0.25	ĕ	0.38	둞	2.1	줖
478 PriCDF	0.09	줖	0. 0 .	# PP	0.35	돌 #	0.39	₹ *	줊	-	0.24	至	蠹	1.8 pet
HICOF	39.8	至	103	ě	<u>£</u>	藍	113	ž	73.4		78.8	둂	35	훒
#100 MICDE	0.59 ##		5.5	de	6	돐	6.1	i pot	<u>::</u>		9.1	玄	J. 9.	줖
678 HYCOF	0.75	玄	Ξ	ĕ	<u></u>	ž	0.83	ĕ	0.63	玄	91.0	둂	囊	3.6 Pg
789 HxCOF	0.13	줖	2.2	ě	25.0	ĕ	0.47	ž	0.32	줖	0.45	ag Ba	쿒	1.5 æt
903 H1 CDF	0.85	玄	1.5	ě	Ξ	줖	0.79	ĕ	9.0	ĕ	=	Ē	ਛ	6.1 Ppt
H200F	51.1	ğ	(PP.	745	至	983	PP	300	돐	339	둞	4252	줊
678 HpCDF	29.7	굺	98.2	t de	183	춢	186	ž	黑	ž	87.3	돭	455	줊
789 HpCDF	=	돭	5.8	žá	=	돮	9.01	ě	"	둪	6.3	훈	æ.	줊
3 030	8.88	굺	1775	į	318	*	4554	Ē	749	ĕ	<u>\$</u>	돮	10706	蓋


R300190


r.e. wright associates, inc.

	86021 S-8 30892-23 9-12-87 (0°) S0		ted	ž	둂	ž	돌 =	ē	훋	豆	de	pot	喜	ĕ	줊	Ē
			9.5	0.09	23.5	9.0	0.61	133	7	~	0.55	5.5	**	%	8.7	899
	86021 S-7 30892-20 7-12-87 (3') S0		ppt b).016 ppt	ppt	0.025 ppt	.077 ppt	Bat	īd	0.17 ppt	pot	0.25 ppt	ě	ĕ	ide	to de
			0.092		0.88	8	副	13	0.61	麗	0.089	a	30	63.6	9:8	924
sults	86021 S-7 30892-21 9-12-87 (2')		pp	0.033 ppt	ig.		10.16 ppt		ppt	0.082 ppt	ğ	ĕ	ppt	藍	t E	pg Bot
Soil Dibenzofuran Results	8,89		0.20	904 O	5.6				3.5	90 0	0.38	1,2	1376	1/2	15	3324
Ulbenzo	86021 S-7 30892-14 9-11-87 (11) S0		0.017 ppt	096 ppt	po Do	021 ppt	026 ppt) Dec	ā	ppt	pat	줊	ă	줖	ā	ž
Soil	8 8 8		90			_	_	10.4	0.17	0 .1	0.021	0.15	32.2	 -:	0.37	1.09
	86021 S-6 30892-22 9-12-87 (11) S0		d		ĕ	줊	<u>동</u>	ppt	ppt	PP PP	ppt	ž	td.	藍	至	ĕ
	966 306 1-7		0.13	## . 08# ##	5.4	₩.0	0.18	89.3	9.1	98.0	7 .0	0.95	607	20	5.1	1067
	SITE: POINT: LAB 10 4: GC/MS OATE: NATIRX:										•			-		
		COP NAME	TCDF	2378 TCDF	Pacof	12378 PhCOF				123678 HrCDF			HOCOF	1234678 HpCDF		9CDF

Table 5-6 (Cont'd)

(M POSSIBLE OPE INTERFERENCE)

that soil sample S-5 also contained the greatest concentration of dibenzofuran isomers, with the octa-isomer comprising a large portion of the total concentration of 15,620.9 ppb.

Previous dioxin investigations conducted at other sites (such as Rappe et al, 1987) reported identifying a portion of dioxin/dibenzofuran isomer concentrations in relationship with depth. If these two variables were to be graphically illustrated, a bell-shaped curve would result indicating lower concentrations immediately above and below the higher concentrations of dioxin contamination in the soil column. Due to the sampling program, soil samples were not able to be collected as a complete series of samples from each location. Therefore, the data obtained from this sampling cannot confirm or refute this postulation.

5.2.4 Soil Sampling Results

Chemical results from the soils investigation conducted at NWP indicate that elevated levels of metals of concern such as arsenic, cadmium, chromium, copper, lead, mercury, and zinc are present in the first 0 to 4 feet of soil. The presence of these metals may be the result of present NWP operations involving the current wood-treating solutions. No information on the use or presence of heavy metals in past wood-treating operations is known.

Volatile organic chemical analysis was performed on the soil samples, revealing elevated levels of total xylenes and methylene chloride and acetone. Lesser amounts of benzene and trichloroethene were also found.

Base neutral and acid extractable compounds such as PCP, 2-methylnaphthalene, naphthalene, phenanthrene and fluorene were found most frequently and in the highest concentrations. Soil sampling location S-5 (tank area) had the greatest concentration of BNAs. Other soil sampling locations contained elevated concentrations of BNAs, although not as high as at S-5, and are significant and reflect the widespread contamination of soil on the NWP property.

Pesticide and PCB analysis indicated that beta-BHC and chlordane were detected in only four of the soil samples. PCB (1260) was found in only one soil sample, S-2 (one foot), at a concentration of 1600 ug/kg.

Cyanide and oil & grease analysis revealed that no cyanide was found above detection limits in the soil and that oil & grease levels were significantly elevated throughout the soil samples taken. This again indicates the widespread introduction of an oil product to the soils at NWP.

Soil samples were also analyzed for dioxin and chlorinated dibenzofuran isomers. Soil sample S-5 (tank area) had the highest total dioxin isomer concentration, 39,318 ppb. The octa-dioxin isomer made up the majority of the total dioxin isomer concentration at S-5 and the other soil samples taken. The same pattern was true for the chlorinated dibenzofurans as well.

In summary, the soil sampling at the NWP plant site revealed that the soils contain significant concentrations of fuel oil and wood preservative (PCP) components which are widely distributed across the site. Concentrations of metals, possibly the result of 5

present NWP operations, dioxin/dibenzofuran, and one location containing PCB (1260) were also identified in the soils. Due to the small sampling base, in which only eight locations were sampled, the extent of contaminant distribution both horizontally and vertically, as well as the maximum contaminant concentration range in the soils, is not clearly defined.

5.3 Groundwater Investigation

5.3.1 Purpose for Groundwater Investigation

The groundwater investigation was undertaken to provide sitespecific hydrogeologic information on the characteristics of the unconsolidated deposits, weathered and fresh bedrock, and groundwater conditions at the site.

The groundwater investigation began with a preliminary sampling of 10 existing monitoring wells to determine appropriate locations for the installation of six cluster well stations. Each cluster well station consists of a shallow well screened to monitor the water table surface, an intermediate well screened in the saprolite near the top of bedrock, and a deep well screened in the bedrock. This monitoring well network provided the following:

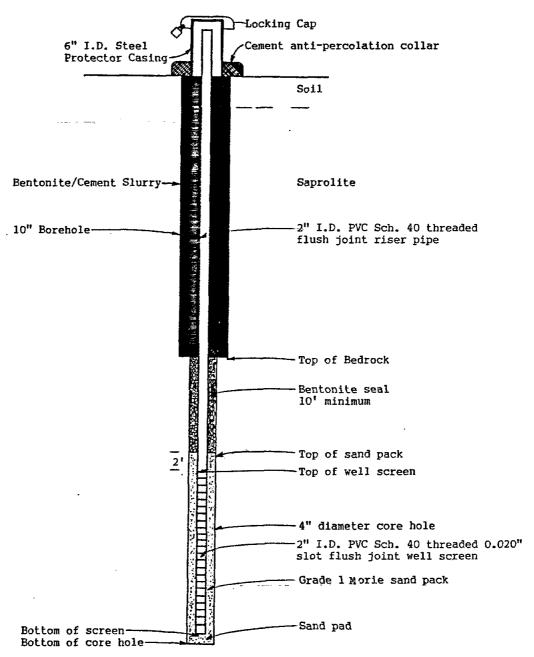
- o Description of the depths, thicknesses, and types of unconsolidated materials.
- o Determination of the thickness of saturated materials.

- o Testing of the saturated aquifer to determine its hydraulic characteristics.
- o Assessment of the potentiometric head differential between the unconsolidated and bedrock materials.
- Determination of the levels of dissolved contaminants within the network area.
- o Determination of the apparent location of the subsurface oil plume, and the associated dissolved contamination plume.

Subcontracted drilling was conducted by Empire Soils Investigations, Inc. (Empire) under the supervision of REWAI. All work associated with the installation of wells, well development, collection of water quality samples, and hydraulic testing was completed as specified by the approved SOP.

5.3.2 Groundwater Monitoring System Procedures

Geologists and staff scientists from REWAI and drilling crews from Empire were on-site from January 18, 1988, to February 26, 1988, to conduct work associated with the installation of the cluster well network at the Havertown PCP site in Havertown, Pennsylvania. A total of 18 groundwater monitoring wells were installed at the site in 6 locations, as shown on Plate 1.


5.3.2.1 Monitoring Well Construction - The hydrogeologic investigation required the drilling of 18 wells. The wells consisted of 6 deep exploratory wells and 12 shallower monitoring wells. The wells were installed such that two wells consisted of 6 deep exploratory wells and 12 shallower monitoring wells.

and one intermediate depth, were drilled adjacent to each deep exploratory well, thus providing a nest of three wells at each of the six locations. The deep exploratory wells were used to ascertain the water quality in the bedrock aquifer and to provide information on the geology of the site as it relates to the nature of contaminant migration. The intermediate wells were used to obtain information on the water quality at the bedrock/saprolite interface, while the shallow wells provided data about the surface of the water table, which was thought to contain a floating oil lens. All wells have been used together to assess the horizontal and vertical migration potential for the contaminants.

5.3.2.1.1 <u>Deep Exploratory Wells</u> - The exact locations of the six exploratory wells were determined following a site survey, mapping, and a preliminary sampling of selected existing wells. Prior to drilling, DER approved the cluster well locations. The deep exploratory wells served as bedrock wells for the subsequent well nests. The DER-approved criteria for deep monitoring well construction (Figure 5-10) are presented in summary below.

Deep well construction steps can be summarized as follows:

o Using six-inch ID hollow-stem augers, drilling was advanced through the unconsolidated overburden section until bedrock was encountered, obtaining continuous split-spoon samples throughout this interval. Soil samples collected from the split spoons were collected in standard soil jars, labeled, and placed in the heated on-site storage trailer. Subsequent to the samples attaining room temperature, each jar was opened and a

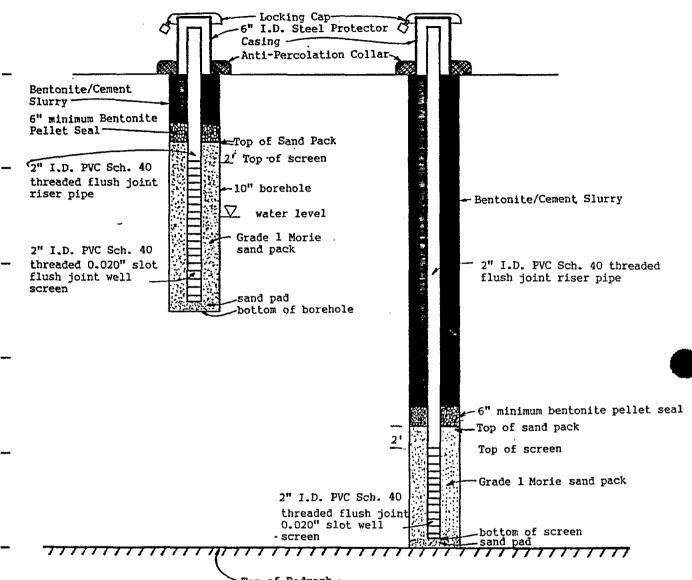
Vertical Scale 1 inch = 10 feet ...

FIGURE 5-10 HAVERTOWN PCP SITE DEEP WELL CONSTRUCTION

heated headspace analysis performed with a field organic vapor analyzer (OVA) and the results recorded. The overburden/bedrock interface was identified as the depth at which the split-spoon sampler did not progress at least 6 inches as a result of 100 blows and followed by refusal of the augers to advance. The resulting borehole had an approximate diameter of 10 inches.

- The REWAI site geologists prepared a written description and classification of the soil samples using the Unified Soil Classification System (USCS). Soil samples were placed into standard glass soil jars, appropriately labeled, and boxed for storage at the Command Post.
- Upon refusal, the augers were raised approximately two feet above the overburden/bedrock interface, followed by the installation of at least a two-foot thick bentonite pellet seal below the bottom of the augers. The bentonite pellets were given time to set and swell before continuing with the drilling. After swelling of the bentonite, the augers were pushed back down through the bentonite seal without rotation until once again encountering the top of bedrock. Although a plug was used to prevent the bentonite from entering the augers, some had inevitably forced its way into the hollow stem. Therefore, after the auger flight was seated into the bentonite seal, the plug was removed from the augers and the interior was cleaned of bentonite by using several Shelby tubes.

- Drilling proceeded using a four-inch core barrel. Cores were collected in five-foot sections and the lithologic description was recorded by REWAI geologists. Rock coring was completed to a depth of at least 20 to 30 feet below the overburden/bedrock interface. The deep exploratory wells did not exceed 70 feet below the ground surface. All rock cores collected were appropriately labeled and stored in wooden boxes at the Command Post. At the completion of the field investigation, the cores and soil samples were relinquished to DER's custody for long-term storage or disposal in accordance with the provisions of the "Contaminated Materials Handling Plan," Section 5.0, of the approved SOP.
- o After coring a 10-foot interval in each of the 6 exploratory wells, constant-head packer tests were completed to measure the bedrock's approximate permeability in each cored interval. Some intervals were too fractured, resulting in substantial leakage around the packer seal, which precluded a proper test. Packer testing was continued in approximately 10-foot intervals until the final well depth was attained.
- Subsequent to completion of the packer tests, a 2-inch ID Schedule 40 threaded flush-joint PVC 0.020-inch slotted well screen was installed into the core hole, with the bottom of the well resting on the bottom of the core hole and with the top of the screen at least 10 feet below the overburden/bedrock interface. Two-inch ID Schedule 40 threaded flush-joint PVC riser


pipe then extended from the top of the well screen up to at least one foot above the ground surface.

- o A Grade 1 Morie sand pack was then placed from the bottom of the core hole up to at least one foot above the top of the well screen. The annular space between the core hole and the PVC riser pipe was then filled with a thick bentonite slurry from the overburden/bedrock interface down to the top of the sand pack. At this point, the augers were slowly pulled out of the ground while a four percent bentonite/cement slurry was pumped, under pressure into the annulus, effectively sealing the annulus.
- o The well was then fitted with a six-inch ID steel protector pipe extending from at least one foot above the ground surface downward to a depth of at least two feet below grade. If the well was located in a heavy traffic area, a locking, watertight driveover was installed in place of the steel protector pipe. A cement anti-percolation collar was installed around the protector pipes and an upper cement seal around the driveovers to preclude surface water infiltration and frost heave. A locking cap and #3303 Master lock was placed on each well, with a duplicate set of keys furnished to the DER site representative. All locks were keyed alike.
- o Final well locations were visibly marked with fluorescent orange-colored paint and flagging on the NWP site. Wells on the PCG property were either installed as flush-mount driveovers or with protector pipe

extending aboveground, which was painted a dark brown so as not to attract attention. Wells have been located by a registered Pennsylvania surveyor, under subcontract to REWAI, and tied into the project base map.

- Shallow and Intermediate Wells Twelve addi-5.3.2.1.2 tional wells were constructed to complement the six deep exploratory wells. Two wells were constructed adjacent to each deep exploratory well, thus providing a nest of three wells at each cluster well station. Each shallow well was set to screen the surface of the water table to intercept any pentachlorophenol (PCP)/oil layer on top of the groundwater table. intermediate depth well was screened in the saprolite layer or highly weathered bedrock zone near the saprolite/bedrock interface. Prior to the installation of the shallow and intermediate-depth wells, the DER site coordinator conferred with the REWAI geologist(s) and approved the location and construction of each well. The depths of these wells ranged between 15 1/2 and 55 1/2 feet below ground surface. The shallow and intermediate monitoring well construction specifications (Figure 5-11) are summarized as follows:
 - o Using the deep exploratory well log as a guide, the screened intervals were determined for the shallow and intermediate depth wells based upon the objectives of the monitoring program described in Section 5.3.1. The shallow- and intermediate-depth wells were then installed in the proximity of the deep exploratory well.
 - o Using six-inch ID hollow-stem augers, the borehole was drilled through the unconsolidated overburden section until the desired depth was reached. A plug was used

SHALLOW DEPTH WELL INTERMEDIATE DEPTH WELL

Top of Bedrock

Vertical Scale 1 inch = 10 feet

FIGURE 5-11

HAVERTOWN PCP SITE

SHALLOW AND INTERMEDIATE DEPTH WELL CONSTRUCTION

r.e. wright associates, inc.

inside of the augers reducing the need to clean out the inside of the augers upon reaching the desired well depth. No soil samples were obtained from either the shallow- or intermediate-depth wells as they were installed close to the deep wells where this information was already obtained. The resulting borehole had an approximate diameter of 10 inches.

- o Two-inch Schedule 40 threaded flush-joint PVC riser pipe and 0.020-inch slotted well screen was then installed at the predetermined depth interval.
- o The annulus between the borehole and the well screen was sand packed with Grade 1 Morie sand to a height of approximately two feet above the top of the well screen. This was accomplished by retracting the augers as the sand was poured into the augers. Continuous measurements by REWAI and Empire ensured the proper installation of the sand pack.
- o A bentonite pellet seal at least six inches thick was placed immediately above the sand-packed intervals with clean water added, if necessary, to allow the pellets to swell and seal. Above this seal, the annular space was filled under pressure with a four percent bentonite/cement slurry to a depth of approximately two feet below ground surface. Both the bentonite pellet seal and the bentonite/cement slurry were installed as the augers were retracted, in a fashion similar to the sand pack installation. Continuous inspection during these procedures yielded a properly constructed well.

- manhole cover was then placed into the borehole and a anti-percolation collar was installed in the remaining annulus up to surface, using Class B cement concrete. The collar was mounded at the surface approximately six inches for wells with stickup and two inches for driveovers, to promote drainage away from the casing. The outer edge of the cement collar for wells with stickup has vertical walls to preclude heaving from freezing and thawing.
- o The six-inch ID steel protector casing on stickup wells and the two-inch PVC riser pipe on driveover wells were equipped with locking well caps. The inner two-inch diameter PVC casing was also equipped with a vent to allow proper pressure equalization during changes in water level. All locks were keyed alike using #3303 Master locks, with one set of keys presented to DER's site representative.
- 5.3.2.1.3 <u>Well Construction Requirements and Decontamination</u> Care was taken to assure that plumbness and alignment of the wells were within the generally accepted tolerance for monitoring wells so as to allow the performance of all testing and sampling.

Groundwater effluent, derived from the well drilling, was diverted to steel 55-gallon drums near the well and transferred by suction pump to the on-site storage tank or stored on-site in the drum storage area as described in the "Contaminated Materials"

Handling Plan" (Section 9.0) of the approved SOP. Coring water was recirculated to minimize the volume of drill water generated.

Upon mobilizing to a cluster well station, clean plastic sheeting was first laid down around the well site; on top of this, fresh plywood sheets were placed. The drilling rig was then backed onto the plywood. Additional plastic sheeting was then placed around portions of the drilling rig in an effort to reduce decontamination procedures. Drilling then proceeded through a hole in the plywood. The use of the plywood sheets and the underlying plastic sheeting minimized the potential for surface contamination at the drilling sites.

Prior to mobilization of the rig to another cluster well station, the just completed site was decontaminated by removing and drumming the plastic sheeting on it, after which the drill rig was moved to the decontamination area where it was thoroughly steamed cleaned with a steam/detergent mix, followed by a steam/high pressure hot water rinse. Drilling tools and miscellaneous equipment used in the construction of the well were decontaminated in a similar manner.

Specific sample collection implements such as split-spoons and augers were also subjected to the high-pressure steam/detergent wash, followed by a high-pressure steam/hot water rinse. Plastic sheeting and plywood boards used during drilling were either drummed or stored on-site in the drum storage area.

5.3.2.2 <u>Supervision, Sample Collection, and Record Keeping</u> - All drilling and well construction activities were supervised by REWAI's on-site project geologists in coordination with DER's project officer and REWAI's project director. Lithologic samples ARJUIZ

were collected continuously in the six deep exploratory wells using two-inch ID split-spoon samples for the unconsolidated deposits and a four-inch diameter by five-foot-long core barrel for sampling the bedrock. Unconsolidated samples were placed into clean glass soil jars; clearly labeled with the job number, well number, sample depth interval, date, and blow counts; and stored on-site for future reference. Core samples were placed into appropriate wooden core boxes, clearly labeled with the job number, well number, sample depth intervals, date, recovery, RQD, and stored on-site for future reference. All observations made by REWAI's project geologists are included on the lithologic and well construction logs in Appendix 1.

REWAI geologists coordinated the drilling and construction of each of the wells and have prepared well logs which accurately depict the history of well construction from split-spoon sampling through well completion. Each final well log contains at a minimum:

- o Project name and REWAI job number, well number, location of well, total depth of well, time/date of starting, time/date of completion.
- o Results of field FID or PID real-time air monitoring volatile organic (VOA) analyses.
- o Visual classification of all continuous split-spoon samples using a Munsell Rock Color Chart, grain size indicator, and the Unified Soil Classification System.

- o Visual classification of all cores recovered from the initial deep exploration well, including presence of fractured and/or weathered bedrock zones.
- o Record of the number of blows necessary to drive the split-spoon sampler for each of four consecutive six-inch intervals, during continuous soil sampling.
- o Depth of the top of firm or fresh rock and all other contacts between dissimilar materials and bottom of the hole.
- o Depths at which water is encountered and the depth of water upon completion of the well.
- All drilling operations were performed in accordance with the site-specific "Health and Safety Plan," Section 7.0, and the "Contaminated Materials Handling Plan," Section 9.0, of the approved SOP.
- 5.3.2.3 Ambient Temperature Headspace Analysis The purpose of the ambient temperature headspace (ATH) was to allow for more accurate organic vapor readings in a controlled environment without disparities caused by temperature, moisture, wind, and drill rig exhaust in the field. The ATH was used in order to obtain a qualitative indication of volatiles in the soils at the site and to make general relationships from the ATH results and the water chemistry results. It should be noted that soil samples were not collected specifically for the purpose of conducting a headspace analysis and that the results are not exact because of the length of time between sample collection and

measurement and further because the samples were not collected in septum-sealed jars.

Soil samples were logged and collected from the deep well of each newly installed monitoring well series. Soil samples were collected continuously at two-foot intervals down to bedrock by means of a two-inch split-spoon sampler. A clean split-spoon was used to sample each interval and a sample from each interval was collected in a clean 1,000 milliliter (ml) glass soil jar. sample jars were partially filled leaving a headspace of approximately equal volume in each container. The sample jars were then placed in a heated storage trailer at a temperature of approximately 70°F for a minimum of 24 hours. As the samples were warmed to room temperature, volatiles were released from the soil and collected in the headspace of each sample jar. headspace measurements were made using a flame ionizing organic vapor analyzer (OVA) and are recorded in Table 5-7.

According to the table, well CW-1D at the NWP plant contained elevated soil gas levels just above the groundwater table, which was at 8.2 feet below the ground surface on March 17, 1988. A minor amount of soil gas was detected just above the saprolite/bedrock interface in the 26- to 28-foot sample intervals. Well CW-2D, also on the NWP plant, contained elevated soil gas levels throughout the unconsolidated units sampled, with slightly more elevated levels found above the water table.

On the PCG property, well CW-3D contained significantly elevated soil gas levels at the 12- to 14-foot and 16- to 20-foot sample intervals. These intervals correspond approximately with the groundwater table and the saprolite/bedrock interface respectively. Well CW-4D has moderately elevated and pass levels

Table 5-7

Ambient Temperature Headspace Analysis Results

<u>Well</u>	Sample <u>Depth</u>	Sample Date	Analysis Date	Total Volatile Organic Vapors (ppm)	USCS Symbol
CW-1D	0- 2'	2/3/88	2/4/88	28.0	SP
	2- 4'	2/3/88	2/4/88	92.0	SP
	4- 6'	2/3/88	2/4/88	100.0	ML
	6- 8 <i>'</i>	2/3/88	2/4/88	17.0	SM
	8-10'	2/3/88	2/4/88	23.0	SM
	10-12'	2/3/88	2/4/88	9.0	ML
	12-14'	2/3/88	2/4/88	7.0	SM
	14-16'	2/3/88	2/4/88	9.0	CL
	16-17'2"	2/3/88	2/4/88	3.0	SM
	18-18'9"	2/3/88	2/4/88	6.5	SM
	20-22'	2/3/88	2/4/88	6.5	SM
	22-24'	2/3/88	2/4/88	6.0	SP
	24-26'	2/3/88	2/4/88	2.5	SM
	26-28'	2/3/88	2/4/88	10.0	SM
	28-30'	2/3/88	2/4/88	1.5	SM
CW-2D	0- 1'	1/20/88	1/22/88	0.4	SM
	1- 2'	1/20/88	1/22/88	32.0	SM
	2'	1/20/88	1/22/88	0.2	SM
	2- 3'	1/20/88	1/22/88	46.0	SP
	3- 4'	1/20/88	1/22/88	24.0	SM
	4-6'	1/20/88	1/22/88	10.0	SM
	6- 8'	1/20/88	1/22/88	6.4	SM
	8-10'	1/20/88	1/22/88	51.0	SM
	10-12'	1/20/88	1/22/88	21.0	SM
	12-14'	1/20/88	1/22/88	25.5	SP
	14-15.9'	1/20/88	1/22/88	24.0	SP
	16-17.5'	1/20/88	1/22/88	4.2	SP
	18-20.0'	1/21/88	1/22/88	6.0	SM
	20-22.0'	1/21/88	1/22/88	10.0	SM
	22-23.75'	1/21/88	1/22/88	11.0	SM
	24-24.9'	1/21/88	1/22/88	12.0	SM
	26-28.0'	1/21/88	1/22/88	26.0	SM
	28-29.5'	1/21/88	1/22/88	22.4	SM
	30-31.0'	1/21/88	1/22/88	10.0	SM
	32-32.33'	1/21/88	1/22/88	5.2	SM

				Total	
				Volatile	
	Sample	Campla	37	Organic	11000
<u>Well</u>	_Depth	Sample Date	Analysis Date	Vapors (ppm)	USCS Symbol
·				•	
CM-3D	0- 2'	2/9/88	2/19/88	6.0	SM
	2- 4'	2/9/88	2/19/88	1.0	SM
	4- 6'	2/9/88	2/19/88	1.6	SM
	6- 8'	2/9/99	2/19/88	1.0	SP
•	8-10'	2/9/88	2/19/88		SP
	10-12'	2/9/88	2/19/88	1.6	SP
	12-14'	2/9/88	2/19/88	140	SP
	14-16'	2/9/88	2/19/88		SP
	16-18'	2/9/88	2/19/88	90	SP
	18-20'	2/9/88	2/19/88	100	SP
CW-4D	0- 2'	2/22/88	2/23/88		SP
	2- 4'	2/22/88	2/23/88	3.0	SP
	4- 6'	2/22/88	2/23/88		SP
	6- 8'	2/22/88	2/23/88		SP
	8-10'	2/22/88	2/23/88		SP
	10-12'	2/22/88	2/23/88		SP
	12-14'	2/22/88	2/23/88		SP
	14-16'	2/22/88	2/23/88	2.0	SP
	16-18'	2/22/88	2/23/88	10.0	SP
	18-20'	2/22/88	2/23/88	5.5	SP
	20-22'	2/22/88	2/23/88	60	SP
	22-24'	2/22/88	2/23/88	75	SP
	24-26'	2/22/88	2/23/88	9	SP
	26-28'	2/22/88	2/23/88	20	SP
CW-5D	0- 2'	2/15/88	2/19/88	1.0	SP
	2- 4'	2/15/88	2/19/88		SP
	4- 6'	2/15/88	2/19/88		SP
	6- 8'	2/15/88	2/19/88		SP
	8-10'	2/15/88	2/19/88		SP
	10-12'	2/15/88	2/19/88	300	SM
	12-14'	2/15/88	2/19/88	>1000	SM
	14-16'	2/15/88	2/19/88	150 ·	SM .
	16-18'	2/15/88	2/19/88	25	SM
	18-20'	2/15/88	2/19/88	30	SM
CW-6D	1- 3'	2/17/88	2/19/88	>1000	sw
	3- 5'	2/17/88	2/19/88	120	sw
	5- 7'	2/17/88	2/19/88	100	SM
	7- 9'	2/17/88	2/19/88	400	SM
	9-11'	2/17/88	2/19/88	300	SM
	11-13'	2/17/88	2/19/88	800	SM
	13-15'	2/17/88	2/19/88	45	SM
	15-17'	2/17/88	2/19/88	90	SP
	17-19'	2/17/88	2/19/88		308212
· · · · · · · · · · · · · · · · · · ·	19-21'	2/17/88	2/19/88	100	SM
		_, _ , , 00	-,,	_~~	

between 20 and 24 feet below the ground surface, which is located in the saprolite. In well CW-5D, a substantial level of soil gas was detected between the 10-foot and 16-foot sample intervals. These intervals are near the groundwater table surface. CW-6D showed the highest soil gas concentrations detected in all of the newly installed deep exploratory wells. Soil gas was significantly elevated in every sample interval, with the greatest concentrations found at the 1- to 3-foot and 11- to 13-foot intervals. These intervals approximately correspond to the surface and the water table, respectively. As the OVA instrument is sensitive to methane and because no soil samples were run for VOA analysis, the positive soil gas responses indicated cannot be wholly attributed to volatile organic contaminants even though no visible organic matter was observed in the soil samples.

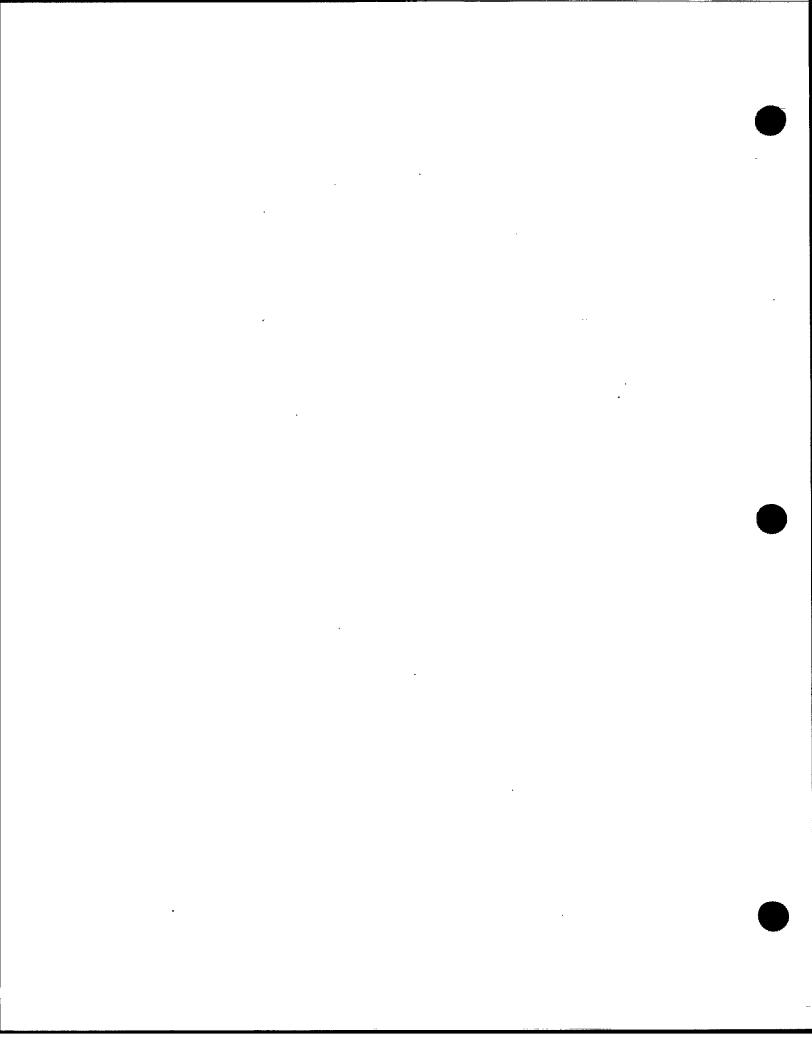
5.3.3 Groundwater Sampling Procedures

5.3.3.1 Introduction - Two rounds of groundwater sampling have been conducted by REWAI at the Havertown PCP site during the Remedial Investigation (RI). The first, or preliminary, sampling round was completed during the week of July 28, 1987, on 10 selected existing monitoring wells. This sampling provided the necessary information to locate and establish proper well specifications for the future installation of the cluster wells. The wells sampled during the preliminary round included: NW-1-81, NW-2-81, NW-3-81, NW-6-81, HAV-02, HAV-07, HAV-08, HAV-10, R-2, and R-4.

A second round of groundwater sampling was performed during the weeks of March 7, 1988, and March 14, 1988, and included 10 of the existing monitoring wells and the 18 newly constructed in included.

cluster wells. Monitoring wells utilized during the second groundwater sampling round consisted of existing wells NW-1-81, NW-2-81, NW-3-81, NW-6-81, HAV-02, HAV-05, HAV-07, HAV-08, R-2, R-4, and the newly constructed monitoring wells CW-1 SID through CW-6 SID. The existing monitoring well HAV-10 was replaced by HAV-05 during the second groundwater sampling round since the HAV-10 well barely yielded enough water for sampling and because well HAV-05 was considered to provide a better groundwater sampling point to intercept any groundwater contamination.

Development of all wells was performed by REWAI prior to sampling in order to remove fine sediments and particles, which may have accumulated in the well and sand pack following its construction and to ensure that water samples obtained were representative of groundwater in the vicinity of the well screens.


The following sections provide a brief description of well development and sampling procedures for both sampling rounds. Both the existing and newly installed monitored wells are discussed. Greater detail on these topics may be found in Chapter 5.0 of the approved Havertown PCP SOP. The results of the chemical analyses are presented and discussed in later portions of this section.

5.3.3.2 <u>Well Development and Sampling of Existing Monitoring Wells - Preliminary Round (Round #1)</u> - As a part of well development and during each groundwater sampling round, field measurements were taken for the groundwater parameters, including specific conductance, pH, and temperature. These parameters were used to indicate when sufficient well development had occurred.

Details concerning these measurements are found in Section 5.3.3.5.

5.3.3.2.1 Wells NW-2-81, NW-3-81, and NW-6-81 - Wells NW-2-81, NW-3-81, and NW-6-81 are located on NWP property and were developed and purged using a one-horsepower centrifugal pump fitted with a dedicated one-inch ID, 100 psi, black polyethylene coil pipe and check valve assembly. All purged water was initially collected in a truck mounted water tank and transferred later to the on-site storage facility. The water purged from these wells was chocolate-brown in color and extremely turbid. Greater than three well volumes were purged from each of these wells; however, the water still remained turbid. The wells were generally low yielding (estimated less than 5 gpm), with the exception of NW-2-81, which had a slightly higher sustained yield. After sampling by dedicated stainless steel bailer was completed, the dedicated coil pipe assemblies were placed back into the wells for future use.

5.3.3.2.2 Well R-2 - It was necessary to develop and purge this well with a one-horsepower submersible pump and dedicated coil pipe, as the standing water column was too far below the ground surface for the centrifugal pump to lift. The well maintained a sufficient yield; however, even after developing and purging approximately seven well volumes, the water was still turbid and colored a light brown. Samples for this well were collected from the pumped discharge. Following sampling, the entire pump assembly was removed from the well, the coil pipe and electric wire were cut up and drummed, and the submersible pump was cleaned to the extent possible and stored on-site.

Approximately two feet of free-floating oil was measured in well R-2, using a sonic interface probe.

- 5.3.3.2.3 <u>Well R-4</u> The standing water column in well R-4 was also too far below ground surface for a centrifugal pump to be used. As a result, the well was purged by hand using a dedicated one-inch coil pipe and check valve assembly, as the available submersible pump could not be decontaminated. A trace of free-floating product was indicated by the sonic probe; however, there was no evidence of product in the sampling bailer after at least three well volumes were removed. After sampling by a dedicated stainless steel bailer, the coil pipe assembly was reinserted and left in the well for future use.
- 5.3.3.2.4 Wells HAV-02, HAV-07, HAV-08, HAV-10, and NW-1-81 Due to low well yields (estimated less than 1 gpm) and poor well construction which allowed fine sand and silt to enter the well, centrifugal pumps could not be used in these wells. Therefore, the wells were developed and purged using clean, dedicated stainless steel bailers fitted with clean, dedicated nylon rope. Approximately one foot of free-floating oil was found in well HAV-02, while HAV-07, HAV-08, HAV-10 and NW-1-81 contained no free-floating product. Purge water from all of the wells had low turbidity and was essentially colorless. Three well volumes were removed prior to sampling with a new dedicated stainless steel bailer. The oil in well HAV-02 was bailed off and placed into the on-site waste storage tanks before this well was sampled.
- 5.3.3.3 Well Purging and Sampling of Existing Monitoring Wells

 (Round #2) After reviewing the sampling methods and chemical
 results from the preliminary groundwater sampling of April 16

monitoring wells, it was decided that a more consistent purging and sampling system was required. In addition, existing monitoring well HAV-10 was dropped from this sampling round and replaced with HAV-05 since it was believed that HAV-05 provided a more representative groundwater sample than HAV-10, which was extremely low yielding during the preliminary sampling round.

To provide a more consistent purging and sampling system for the existing wells during sampling round #2, all wells were purged and sampled using a peristaltic pump and dedicated polyflo and silicon tubing assemblies. All tubing was replaced with new tubing between wells. Used tubing was then placed into sealed and labeled 55-gallon steel drums and stored at NWP when sampling was completed.

A minimum of three well volumes was removed from each well during purging to ensure that the water within the well was representative of the surrounding aquifer. The purged water was collected in a truck-mounted 450-gallon tank prior to being transferred into a 2,500-gallon bulk storage tank on-site. Groundwater parameters consisting of specific conductance, pH, and temperature were obtained during well purging and sampling. Details concerning these measurements are included in Section 5.3.3.5.

Monitoring Wells - The 18 monitoring wells that were installed by REWAI in January and February of 1988 were all equipped with dedicated Well Wizard pumps. These are bladder pumps which are operated by compressed air, which is able to be varied to control the flow rate of the pump according to the yield of the well. Well Wizard pumps were chosen for these wells?

reasons—namely, the pumps can fit into a two-inch well casing; water can be pumped from wells of varying depths; the pumps can be dedicated to wells (which eliminates the chances of cross-contamination); and the pump controller is easily mobilized from one well to another.

The Well Wizard pumps were used for both development and sampling. Development and sampling followed the same criteria and parameters as used for the existing wells which are outlined in Section 5.3.3. The new monitoring wells responded positively to development with Well Wizards, by yielding water with good clarity and consistent parameters. The clarity and consistency of the water obtained and the use of dedicated pumps ensured the quality of the samples and the validity of the chemical results.

5.3.3.5 <u>Field Parameters</u> - Field measurements of groundwater parameters were obtained during both well development and well sampling for each sampling round. These parameters included specific conductance, pH, and temperature. Parameters were taken after a minimum of three well volumes was purged from the well or after the purge water had sufficiently cleared. Samples were collected in a clean, quart-size mason jar after the jar had been rinsed three times with the water to be sampled.

Specific conductance was measured with a YSI Model 33 SCT meter calibrated against a standard solution at 25°C. Because this meter does not correct the specific conductance measured at the field water temperature to its equivalent at 25°C, an immersion thermometer was used to obtain the groundwater temperature so that the specific conductance readings could be corrected to their equivalent temperatures at 25°C. A Beckman pH meter with a

two-buffer (4.0 and 7.0) calibration was used to measure the pH of the groundwater.

Field parameters were measured at five-minute intervals until the specific conductance values expressed less than a five percent variance and pH varied less than 0.1 units for three consecutive readings.

Well development and well purging were considered to be completed when this criteria was met. The monitoring wells were then ready for sampling. In some cases, three well volumes could not be purged from a well because of low yield. In this situation, the well was evacuated twice and allowed to recover to at least 75 percent of its original water level without allowing more than 24 hours to pass before obtaining samples.

All purged water was considered contaminated and was collected and transferred to a 2,500-gallon bulk storage tank on-site.

5.3.3.6 Chemical Analysis

5.3.3.6.1 <u>HSL Plus Oil and Grease</u> - REWAI's laboratory subcontractor, CompuChem Laboratories (CompuChem), an EPA-certified laboratory located in Research Triangle Park, North Carolina, provided the analytical services for the HSL plus oil and grease analyses for both groundwater sampling rounds at Havertown.

Glassware and preservatives for sampling were provided by CompuChem in "sample saver" shuttles. Table 5-8 indicates the type of analysis, type and quantity of glassware, type of preservative required (if any), and special preparation necessary for each sample type. After acquisition of samples, the appropriate preservation was performed. All samples were then packaged with cold packs in CompuChem shuttles and shipped with a chain-of-custody via Federal Express Priority One overnight delivery to CompuChem.

Following analysis and QA/QC by CompuChem, data was transferred to REWAI by Federal Express and via computer. Because of the voluminous nature of the data and the associated QA/QC, the original data reports for both sampling rounds were sent to DER for filing and storage. Appendix 2 summarizes the results obtained from both sampling rounds.

5.3.3.6.2 <u>Dioxin and Dibenzofuran</u> - The analysis for dioxin and dibenzofuran during the preliminary sampling round was performed by the EPA, under the contract laboratory program (CLP), by California Analytical Laboratory (CAL) of West Sacramento, California. The groundwater samples analyzed by CAL were part of Case #3151C, which also included the surface water samples from Naylors Run. Copies of the data results were obtained by REWAI through DER. A tabulation of the dioxin/dibenzofuran results of the preliminary sampling round is included in Appendix 2.

The dioxin and dibenzofuran analysis for sampling round #2 was performed for REWAI by ChemWest of Sacramento, California.

Table 5-8

Groundwater Sampling Glassware

Special Preparation	No head space in vial	Barrel filter with 0.45 micron membrane filter					
Preservation	cool, dark	pH <2, 30% HNO3 cool, dark	cool, dark	pH <2, 30% H ₂ S04 cool, dark	pH >12, 30% NaOH	cool, dark	cool, dark
Number of Bottles	7	N	м	H	ਜ	N	n
Glassware	40 ml glass vial	500 ml plastic jar	1 l amber glass jar	1 l amber glass jar	1 l amber glass jar	1 l amber glass jar	1 l amber glass jar
Analysis	Volatile Organic Aromatics	Dissolved Metals	Acid Extractables Base Neutrals	Oil & Grease	cyanides	PestidMe/PCBs	*Dioxin/ Dibenzofuran

*One amber glass 3-liter jug was used for the dioxin/dibenzofuran analysis during the preliminary sampling round.

r.e. wright as ociates, inc.

In order to maintain consistency between sampling rounds, ChemWest utilized the same analytical procedures and requirements as specified by EPA in their original Special Analytical Services (SAS) Regional Request performed by CAL during the preliminary (round #1) sampling round. A copy of the SAS request for dioxin/dibenzofuran analysis is included in Appendix 3.

5.3.4 <u>Hydrogeologic Testing</u>

- 5.3.4.1 <u>Purpose</u> Measurement of groundwater levels in as many wells as possible on two separate occasions and slug testing of all newly installed monitoring wells were conducted at the Havertown PCP site for the purpose of:
 - o Determination of the hydraulic properties of the unconsolidated and bedrock materials.
 - o Assessment of the interrelationship of the unconsolidated and bedrock aquifers.
 - o Determination of the direction and rate of groundwater flow at the site.
- 5.3.4.2 Groundwater Level Monitoring During the course of fieldwork at the Havertown PCP site, static water level measurements were made in all existing monitoring wells which could be relocated and in all of the newly installed monitoring wells. These wells include the SMC Martin wells, the James Humphreville wells, and the newly installed REWAI wells. All water levels were measured on the same day and in as short a time as possible to allow comparison of all wells. Two complete

rounds of water levels were measured and are included here on Table 5-9.

Groundwater levels were measured by a REWAI field crew on March 17, 1988, and April 11, 1988. Measurements were made to a surveyed reference point (top of casing) at each well using an electric water level indicator or a sonic interface probe. The water level instruments were decontaminated between wells by rinsing several times with distilled water. The well number, date and time measured, depth to water, depth to fluid (oil), and any corresponding notes are included in the field notes. Water level elevations are referenced to mean sea level (msl) through a recent survey by a registered Pennsylvania surveyor, under contract to REWAI.

5.3.4.3 Aguifer Testing

5.3.4.3.1 <u>Slug Tests</u> - In-situ hydraulic conductivity (permeability) of the saturated unconsolidated materials and bedrock were determined by means of the rising-head and falling-head conductivity or "slug test" method. A data logger recorder coupled with a pressure transducer was utilized to continuously record changes in water levels in response to slug immersion and withdrawal. A minimum of two tests in each direction was performed.

Slug tests were conducted on the 18 newly installed deep, intermediate, and shallow monitoring wells. Each run of the slug test lasted between three and four minutes. The data logger was typically set to record changes in head at the rate of 5 readings per second for the first 60 seconds and at 1 reading per 5 seconds thereafter. A computer program written 2603 Debora B.

Table 5-9
Static Water Level Elevations

Monitoring Well	PVC Casing Elevation (ft)	Ground Surface Elevation (ft)	Static Water Level I March 17, 1988	Elevation (ft MSL) April 11, 1988
CW-1D	308.80	307.2	299.03	299.59
CW-11	308.82	307.3	299.05	299.23
CW-1s	309.39	307.4	299.48	300.18
CW-2D	307.81	305.8	294.00	294.10
CM-51	307.59	305.9	293.95	294.15
CW-2S	307.35	305.9	294.04	294.16
CW-3D	Driveover	305.13	292.78	292.83
CW-31	Driveover	305.06	292.81	NA
CW-3s	Driveover	304.99	292.70	292.76
CW-4D	Driveover	305.66	292.74	292.80
CW-41	Driveover	305.77	292.59	292.69
CW-4S	Driveover	305.90	292.55	292.63
CW-5D	304.65	302.9	292.31	292.59
CW-51	304.43	303.0	292.41	292.37
CW-5s	304.61	303.3	292.58	292.49
CH-6D	Driveover	301.34	286.20	286.24
CW-61	Driveover	301.20	284.83	285.87
CW-6S	Driveover	301.10	285.46	285.56
HAV-02	307.35	307.0	291.95/292.85	292.02/292.98
HAV-05	294.66	294.3	291.08	291.30
HAV-07	283.84	283.0	282.09	282.28
HAV-08	286.75	286.1	283.09	283.41
HAV-10	299.71	299.0	292.11	292.38
R-2	314.24	312.70	289.72/293.82	289.95/293.89
R-4	315.60	316.0	295.81	295.46
NU-1	307.48	307.1	294.63	295.06
NW-2	306.45	306.6	294.43	294.45
NW-3	307.61	307.6	299.49	300.07
NM-9	306.42	306.3	296.53	296.70

"MOTE: 291:95/292.85 = Water Elevation/Oil Elevation In Well

Thompson (Groundwater March-April 1987, pp. 212-218) and adapted for use on REWAI's in-house computers was used to calculate and normalize drawdowns by dividing each by the initial (maximum) drawdown. A graph of the normalized drawdowns versus time was made on semilogarithmic paper with the drawdowns plotted on the logarithmic axis and time plotted on the arithmetic axis. A "best fit" line was then statistically interpreted from the analyst's chosen section of the graph by the least-squares method. The appropriate equation to solve for hydraulic conductivity was then selected based upon the well construction, and values for the hydraulic conductivity and regression coefficients were calculated. Data obtained from the slug tests and the results of the hydraulic conductivity calculations are included in Appendix 4.

5.3.4.3.2 <u>Packer Tests</u> - Pressure permeability (packer) tests were run during drilling to determine the permeability of the bedrock zone being tested as an aid to establish well construction. As discussed in Section 5.3.2.1.1, a 10-foot interval was cored into bedrock and the drilling tools removed, an inflatable packer was then seated above the bottom of the hole, and water (from the Philadelphia Suburban Water Company) under pressure was pumped into the test section. Readings of water volume (gallons) were recorded every minute for five consecutive minutes for each of at least three pressure settings. The data and the results of the calculations are included in Appendix 4.

The resulting packer test data were reduced to a corresponding hydraulic conductivity value using the pressure permeability test reduction method presented in the Ground Water Manual, U. S.

Department of the Interior, Bureau of Reclamation, 1985, pp. 249-264.

Summary of Findings - A direct comparison of the results obtained from the two aquifer test methods reveals a poor correlation between the bedrock hydraulic conductivities calculated by the slug test and packer test methods. This is not unexpected and the comparison should be avoided as the two methods are utilized for different purposes and because of inherent differences associated with each test method. tests were performed to provide an estimate of the hydraulic conductivity of the aquifer materials in the vicinity of the saturated screened intervals. The packer tests, however, were used to provide a field estimate of the bedrock aquifer's hydraulic conductivity at the time of drilling. The packer permeability estimates allowed REWAI geologists to better determine the well construction specifications as each deep exploratory well was drilled. Section 5.3.4.4.3 discusses the hydraulic conductivity of saturated unconsolidated and bedrock materials in greater detail.

5.3.4.4 Groundwater Hydrology

5.3.4.4.1 Water Table Contour Map - Water level and oil thickness were measured at the Havertown PCP site on March 17, 1988, and again on April 11, 1988. Because of the presence of oil in some of the wells, a sample of the oil was collected from well R-2 on April 11, 1988, and analyzed by Wright Lab Services, Inc. (WLSI) of Middletown, Pennsylvania, for specific gravity. As shown in Appendix 2, WLSI reports that the specific gravity for the oil collected from well R-2 was 0.897. Using this specific gravity and the thickness of oil found in each well 26

equivalent height of water was calculated for each well with oil in it. This equivalent height of water was then subtracted from the water/air interface elevation to arrive at the hydraulic head of the water table for each respective well. The following formula was used to calculate the hydraulic head of the water table in monitoring wells which contained measurable amounts of oil in them:

Hydraulic Head = E - [f - (f * 0.897)]

Where:

E = oil/air interface elevation (feet)

f = oil thickness (feet)

0.897 = specific gravity of the oil

(Adapted from discussion of hydraulic head in Freeze and Cherry, 1979, Chapter 2.2.)

The hydraulic heads for the water table were then plotted next to their respective well location and contoured to produce water table contour maps for each measurement date. An interpretation of each water table contour map yielded the determination that no significant differences existed between the two measurement dates; therefore, only one water table contour map, March 17, 1988, is included here as Plate 4. An inspection of this map indicates that the groundwater has a higher horizontal hydraulic gradient under the NWP and Rittenhouse Circle areas (0.021 and 0.030 respectively), while a lower hydraulic gradient exists under the Swiss Farm Market and the PCG building (0.007). This change in gradient is probably expressed as a change in permeability of subsurface materials. It follows then that the

aquifer is heterogeneous and that anisotropic (preferred flow direction) conditions exist in the subsurface. At this time, it is not known how this change in hydraulic gradient affects the migration of the subsurface oil plume. More information is necessary to properly address this question.

The flow of groundwater is apparently southeast to east-southeast across the study area, as indicated by the flow arrows.

5.3.4.4.2 <u>Vertical Groundwater Gradient</u> - An analysis of the water level elevations in the newly installed cluster wells was performed to determine if a vertical gradient exists in the flow of groundwater at the site. Using the March 17, 1988, water level elevation data, the vertical gradients for each cluster well series were calculated by dividing the change in water level elevations by the vertical separation distance between the respective sand-packed intervals. Appendix 5 provides the calculation details.

Table 5-10 lists the vertical gradients calculated for each cluster well series. Overall, the vertical gradients found at the site were small, ranging from 0.001 to 0.028. Comparing the vertical gradient to the average horizontal gradient (0.019) calculated in Section 5.3.4.4.1, the ability of the vertical potential to modify groundwater flow can be considerable at some locations, namely wells CW-1, CW-5, and CW-6.

5.3.4.4.3 Hydraulic Conductivity - As discussed in Section 5.3.4.3.1., slug tests were conducted in the newly installed monitoring wells to provide an estimate of the permeability of the saturated unconsolidated and bedrock materials.

Table 5-10

Vertical Gradients and Direction of Flow

From Well/ to Well	Respective Water Levels (ft)	Vertical Separation (ft)	Vertical <u>Gradient</u>	Direction of Flow
CW-1s/CW-1D	299.48/299.03	34	0.013	Downward
CW-2S/CW-2D	299.04/299.00	40	0.001	Downward
CW-3S/CW-3D	292.70/292.78	28	-0.003	Upward
CW-4S/CW-4D	292.59/292.74	30	-0.005	Upward
CW-5S/CW-5D	292.58/292.31	28	0.01	Downward
CW-6S/CW-6D	285.46/286.20	26	-0.028	Upward

Tables 5-11A and B provide a list of the average hydraulic conductivities calculated from all of the slug tests in each of the wells for the saturated unconsolidated and bedrock wells. On Table 5-11A, it is shown that the unconsolidated aquifer has a hydraulic conductivity range from 1 gpd/ft² to 103 gpd/ft², while on Table 5-11B, the bedrock aquifer ranges between 6 gpd/ft² and 182 gpd/ft². Although the permeability ranges are similar, the three-dimensional distribution of the hydraulic conductivity data are of greater importance.

As previously shown on the water table contour map, Plate 4, the general flow of groundwater is towards the east, or in an east-southeast direction. However, this description refers only to the horizontal plane. To gain a better understanding of groundwater flow dynamics and direction, the vertical component must also be considered. Although the magnitude of variation of groundwater vertical gradients overall was not shown to be large (Section 5.3.4.4.2), it is believed that groundwater flow directions are significantly modified by these variations in vertical gradient. The variations in the vertical gradient of groundwater are believed to be the result of changes in the permeability (hydraulic conductivity) of aguifer materials. effect that the variation of hydraulic conductivity has on the groundwater contaminant flow will be addressed in Section 5.3.6, Affected Area.

To obtain a better perspective of the spatial variance of permeability of the aquifer materials, the hydraulic conductivity values from Table 5-11 have been plotted next to their respective wells on the geologic fence diagram, Plate 3. From the data presented on the fence diagram, it appears that a trend exists in the permeability of the unconsolidated and 2001230

Table 5-11A

Saturated Unconsolidated Materials Slug Test Results Average Calculated Hydraulic Conductivities

Monitoring Well	Hydraulic Conductivity (gpd/ft2)
CW-1S	48
CW-1I	103
CW-2S	*
CW-2I	72
CW-3S	8
CW-3I	27
CW-4S	8 .
CW-5S	*
CW-6S	1

^{*} Test results did not meet analysis validity requirement of instantaneous water level change.

Table 5-11B

Bedrock Slug Test Results Average Calculated Hydraulic Conductivities

Monitoring Well	Hydraulic Conductivity (gpd/ft2)
CW-1D	56
CW-2D	70
CW-3D	9
CW-4I	6
CW-4D	139
CW-5I	*
CW-5D	182
CW-6I	7
CW-6D	6

* Test results did not meet analysis validity requirement of instantaneous water level change.

aquifer materials. Beneath NWP, the saturated unconsolidated materials tend to have a moderate to moderately high hydraulic conductivity (48 - 103 gpd/ft²), while under PCG the saturated unconsolidated aquifer materials become less permeable, with hydraulic conductivities being moderately low (1.4 - 27 gpd/ft²). This trend is different in the bedrock aquifer, where the materials under NWP and under the southern portion of PCG property are of moderately high to high permeability (56 - 182 gpd/ft²), while along the northern portion of PCG property, the bedrock hydraulic conductivity becomes moderately low (6 - 9 gpd/ft²). From this information, along with an understanding of the vertical gradients at the site, it appears that a significant change in hydraulic conductivity exists in the subsurface between NWP and PCG.

Accordingly, the groundwater flow is believed to be modified by these characteristics, such that the groundwater flows slightly downward in the unconsolidated materials under NWP and into the bedrock in the vicinity of Eagle Road. From there, the groundwater in the bedrock is believed to continue its slightly downward flow until reaching an area under PCG property, where it begins to rise. This pattern is shown on the geologic cross section, Plate 2, by the equipotential lines and generalized groundwater flow lines.

The equipotential lines represent lines of equal hydraulic head potential, in feet above mean sea level. These were established by placing the hydraulic head potential at each of the cluster wells near the approximate center of the saturated well screen interval in each well. Using the cluster wells in this manner enabled a determination of the groundwater flow in the vertical dimension to be made by contouring between the hydraulic head 18300233

values. The generalized groundwater flow directions were then estimated by inferring lines perpendicular to the equipotential lines from areas of higher hydraulic head toward areas of lower hydraulic head. The generalized groundwater flow directions were then adjusted as discussed in Section 5.1 of Freeze and Cherry (1979) for refraction caused by flow through formations of differing hydraulic conductivity as shown previously on Plate 2.

5.3.4.4.4 <u>Calculation of Groundwater Velocity</u> - Based upon the water table contour map, Plate 4, and the results of aquifer tests, the average groundwater velocity can be calculated. Valid slug test results from the newly installed monitoring wells were used to estimate hydraulic conductivity and to calculate the average groundwater velocity, as these wells are most representative of the properties of the saprolite water-bearing zone in the study area.

Like many geological variables, the hydraulic conductivity data do not follow a normal distribution; rather, they exhibit a pronouncely skewed distribution. Therefore, to counter the effects that the relatively few number of large values of hydraulic conductivity would have on the mean, the geometric mean of the data was employed to normalize the values.

Calculating the geometric mean for the valid slug test hydraulic conductivity (K) values results in a value of 22 gpd/ft². This value is converted to ft/day by dividing by 7.48 yielding 2.94 ft/day as the geometric mean of hydraulic conductivity. Horizontal hydraulic gradients (I) were calculated using the water table contour map dated March 17, 1988 (Plate 4) by dividing the change in hydraulic head by the effective distance (dh/L or 0.019). This date was chosen as both static patents.

measurement dates were taken during the same season. Although field measurements of porosity (n) were not performed, an estimate of 21 percent for the fine sand (saprolite) has been determined from representative values of effective porosity, included here as Table 5-12, and the general textural properties of the unconsolidated deposits examined during the drilling program.

The average groundwater velocity may then be calculated by inserting the aforementioned components into the following formula:

$$\overline{v} = \frac{KI}{n_e}$$

Where:

 \overline{V} = estimated average groundwater flow velocity, ft/day

K = geometric mean of hydraulic conductivity, ft/day

I = average hydraulic gradient, dimensionless

ne = assumed effective porosity value (%)

Solving the equation yields an average groundwater velocity (\overline{V}) of 0.27 ft/day. It is important to point out that this velocity is an estimated average velocity and is representative only for a nonreactive solute under ideal conditions. This value would not be applicable to the movement of the oil fraction which differs from water in its density and viscosity, confining it to the water table surface. However, the value is helpful in providing an indication as to the rate of movement of the contaminants dissolved in groundwater.

Table 5-12

Representative Values of Porosity (After Morris and Johnson, 1967, reference of total porosity, and Pettyjohn et al, 1982, estimate of effective porosity)

<u>Material</u>	Total Porosity <u>Percent</u>	Effective Porosity Percent
Gravel, coarse	28*	22
Gravel, medium	32*	23
Gravel, fine	34*	25
Sand, coarse	39	27
Sand, medium	39	26
Sand, fine	43	21
silt	46	8

^{*} Values are for repacked samples; all others are undisturbed.

5.3.4.4.5 <u>Calculation of Groundwater Discharge</u> - In order to determine the approximate quantity of groundwater leaving the present area of investigation, a calculation based upon Darcy's Law was performed which estimates the discharge, in gallons per day (gpd), of groundwater from a given cross-sectional area of the aquifer. The location chosen for the trace of the cross-sectional area began at the sanitary sewer manhole situated approximately 145 feet east of the series CW-3 monitoring wells (refer to base maps, Plate 1) and extends southeastward roughly 325 feet to monitoring well HAV-06. This location provides representative estimates of groundwater exiting the present study area perpendicular to the groundwater flow direction.

Q = KIA (Darcy's Law)

Where:

- Q = The discharge through the cross-sectional area of the aquifer per unit time and expressed as ft/day.
- K = The hydraulic conductivity of the aquifer materials
 expressed as ft/day.
- I = The change in hydraulic head in the aquifer across the site, in this case, parallel to groundwater flow. This is known as the hydraulic gradient and is expressed dimensionless.
- A = The cross-sectional area of the site through which the groundwater is flowing. The orientation was established perpendicular to groundwater flow. The length of the cross-sectional area has been estimated at 325 feet,

r.e. wright associates, inc.

while based upon chemical data and allowing some margin of error, a saturated thickness of 100 feet has been used in the calculation.

The equation assumes:

- o The aquifer materials are homogeneous and isotropic.
- o The viscosity is constant and equals that of water.
- o The groundwater is flowing at very slow velocities so as to avoid non-laminar flow conditions.

Inserting the results of calculations from previous sections, the equation becomes:

Q = (2.94 ft/day)(0.019)(325 ft * 100 ft),

 $Q = 1815 \text{ ft}^3/\text{day, or}$

Q = 13,580 gpd

Therefore, the anticipated volume of groundwater estimated to pass through the given cross-section of the aquifer would be approximately 13,600 gpd. It is important to realize that this value is based upon assumptions which may be questionable or even invalid; thus, discretion should be used when utilizing this calculated value.

5.3.5 Groundwater Sampling Results

Groundwater samples from both sampling rounds were analyzed for the complete Hazardous Substance List, cyanide, oil and grease, and dioxin/dibenzofuran parameters. The analytical work was performed in accordance with the contract required QA/QC procedures delineated in the SOP for the Havertown PCP site. Sampling procedures have been previously addressed in Section 5.3.3, "Groundwater Sampling Procedures," which also states that the original data and QA/QC have been transferred to DER for filing and storage owing to the voluminous nature of the data. Chemical result spread sheets have been provided as tables and in Appendix 2 of this report to summarize the results and ease the readers review of data.

5.3.5.1 Round #1 Preliminary Sampling Round

- 5.3.5.1.1 <u>Metals</u> Groundwater samples from 10 selected existing monitoring wells were analyzed for dissolved metals. Significant quantities of iron, manganese, magnesium, calcium, sodium and potassium were present in the water. Heavy metals, including arsenic, chromium, copper, cobalt, and zinc, were also identified in some of the wells sampled. Arsenic was found in three groundwater samples NW-6-81, R-2, and R-2 Dup, at concentrations of 7.9, 4.1, and 7.4 ug/l respectively. Chromium was detected at a concentration of 161 ug/l at only one location, NW-3-81. Zinc was found at concentrations ranging from 18 ug/l at HAV-07 to 581 ug/l at HAV-08. Cobalt ranged from 13 ug/l at R-4 to 539 ug/l at NW-2-81. Copper was detected at 2.9 ug/l at NW-1-81 and 14 ug/l in R-2 Dup. Table 5-13 contains the results of Round #1 metals analysis.
- 5.3.5.1.2 <u>Volatile Organic Aromatics</u> Groundwater analysis for VOAs was completed on water samples from the 10 selected existing monitoring wells. The results of this analysis, shown

Table 5-13 Groundwater Round 1 Metal Results

		48 ug/l	3.7 ug/l	- <u>1</u>	- E	/6n /	_ - €	2.2 ug/l	0.2 ag/l	2 mg/3	12 mg/1	_ 	2.2 ug/l	<u></u>	/6#	- Fg	/en	- F	12 mg/	E 69/	£ 69/	[/6a	E 69/	# 4 /1
86021 R-4 07/30/87 GROWA I	14182	E	5	爱 i	Ē	훒	•.•	8	囊	鞷	줊	松	臺	\$	8	墓	%	٠. د.	Ē	2	12100	3300	4 00	7130
		1/6n 8 7	F 19/1	/6n -	1/6n +	7 mg/J	£ 49/]	f ug/]	0.2 ug/l	21 wg/]	7.5 ug/l	12 ug/l	11 ag/l	[/5m	- - - -	1/68	ug/l	1/6a	[/6A	E ug/1	E 49/	1/6n	E #9/]	£/63
84021 R-2(DUP) 07/30/87 GNDWAT	14188	色	7.	2	Ē	藍	=	<u>.</u> .	룚	룚	롩	룏	室	328		9300	204 <u>00</u>	∽	#	£	25500	91900	7600	19000
		1/6n 8#	F 09/1	1 ug/1	/6n >	/60 /	1/6n	2.2 ug/l	0.2 ug/l	21 mg/l	12 ug/l	7 ug/1	2.2 wg/l	E 113/	l/6a	/ô#	1/69	1/6n	12 mg/1	E ug/]	E 49/]	763	E 19/1	(g)
86021 R-2 07/30/87 GMDMA®	14189	蓋	=	蓋	E	藍	≘	ž	\$	둞	霊	2	ක් ක්	322	4 5	8 3	19700	•	죑	Ξ	24900	00009	72100	18300
		50 ug/1	ng∕1	1 ug/1	1/60 7	10 ug/1	1/6a	- mg/	0.2 mg/l	32 mg/J	1.5 mg/l	9 mg/J	1.4 ug/l	1 /6#	(ug/l	/6 4	[/m	[/6a	S7 mg/1	1 /6n	E ug/1	1/6#	E 49/1	L/6m
86021 MV-6 07/28/87 GRDMAT	143475																							
		50 Lg/l	2.3 ug/l	1 09/1	1/6n †	1/6 0	1/6n	1 ug/1	0.2 wg/1	32 ug/1	7.5 trg/1	[/bn 6	F ug/1	/6n	E ug/l	l/gn	1/60	1 /6#	1/6m	[/6n	E ug/	1/61	F 49/1	3600 ug/l
86021 NU-3 07/28/87 GNOWAT	143474	8	盘		a	191	6.5	墓	3	蓋	色	蠹	1.7	88	<u>\$</u>	4	53%	•	<u> </u>	124	31200	89000	21100	8
-		57 ug/1	2.3 ug/l	1 49/	1/6n +	10 ug/1	1/6m	# F ug/]	0.2 ug/1	32 449/1	7.5 ug/l	/B9 &	1.4 mg/l	1/69	/m 3	1/6m	- may	[/6A	S7 @4/	- F	E 119/	1/64	- F	1/67
8602) NW-2 07/28/87 GNDWAT	143473	8	2	富	豎	蓋	6.5	-	臺	줊	盏	8	\$	121	2	75	1090	(-)	爱	53	1400	36700	21000	3870
																								/6a
86021 Na-1 03/30/87 GNDHAT	143948	줆	8		100	K 8	2.9	ā	ě	68	Ē	8	2.9	97	102	0609	395	¥.	줊	61	10900	33500	30800	9100
SITE SAMPLE ONTE NATRIX	METALS LAB 1.D. #	*************			•								•						-					
3530-0dH2 12 0dH2		LWT PHONT	WSENIC	PERTLE IUM		THROWING	COPPER	EAD	FREIRY	HEKE	SELENIUM	SHUFF	THALLIUM	786	AND SAN	NO.	MAKGAMESE	MANADI UM	A LIMITAGE	L WEST	MAGNES !!!!	SALCIUM.	Milion.	POTASSTUR
1 13 0das	•	2	=	=	=	=	=			=	=	=	=	=	ž	æ	=	=		=	_	=		= E

r.e. wright associates, inc.

r.e. wright as sociates, inc.

Table 5-13 (Cont'd) Groundwater Round 1 Metals Results

		SITE SAMPLE DATE	86021 HAV-2 07/30/87		86021 HAV-7 08/01/87		12070 H-W-8 08/01/87		86021 HAV-10 08/01/87	
	THPO CL. CHPD-DESC	MATRIX	CADIMAT		GHOMAT		SHOWAT		EMDMA I	
		NETALS LAB 1.D. #	14191		14175		14177		14179	
		PR	## 	•	11 11 11 11 12		11 11 11 11 11 11		15 15 15 16 16 16	:
≡	ANTI HONY		蠹	1/6n 8t	줖		叠	#	Ē	₹ \$
102 #	ANSERIC		1	3.7 ug/l	줊		副	3.7	2	3.7
103 #	BERYLL 1UM		Ē	/bn	풀		藍	_	≅	/6# =
5	CADMIUM		S	1/6n)	緩		줊	*	鞷	4 mg/1
105 M	CHROMIUM			7 ug/]	룖		륦	7	蠹	7 mg/]
8	COPPER		3.4	76 ₹	3.5		* .		**	7 6€
107 #	LEAD		\$	2.2 ug/l	毫		줊	2.2	2.5	K F ug/1
罗	MERCURY		Z.	0.2 ug/l	훒		줊	0.2	Ē	0.2 49/
109 M	MICKEL		爱	21 @9/]	藍		喜	≂	叠	21 09/1
E	SELENIUM		ਛ	12 ug/l	蓋		줎	12 mg/]	5.1	# F 149/
Ξ	SILVER		E	7 89/	2		줎	-	蠹	/图/
112 #	TEAC LIST		=	F 49/	2.4		3.4	.	3.6	[/6a
13 A	71MC		22	E ug/}	2		33	ш,	æ	E 58/1
# #	BARTON		e3	l/6M	117		132		3	1/6
15.1	1808		0449	J/6n	0991		268		18	1/64
₩ 92	PRINCIPAL SE		20900	1/69	25		233		874	1/ga
117 #	WARAD LIST		9.6	1/6n	9.2		9		9.9	1/60
H 811	A CHIMON		盏	1/6a St	翻		藿	÷	臺	15 ug/1
2	COBM.1		~ :	E 119/	1		23	···	1	1/6n 3
121 H	MAGNES IUM		2750	[/6# 3	15700		43200	w	2 2 2	E 49/1
129 M	CACCIUM		39700	1/ 6 n	40500		<u>8</u>		25%	1/6n
130 130	Spolum		59000	E 49/	23700		<u> </u>	w	12400	E 16€/
131 #	POTASSIUM		12600	l/bn	13900	mg/l	10/00		916	1 69

on Table 5-14, indicate the presence of ten (10) chemicals usually associated with solvent and gasoline/fuel oil contamination, namely benzene; 1,2-dichloroethane; 1,2-dichloroethane; 1,2-dichloroethene; 1,1,1-trichloroethane; trichloroethene; vinyl chloride; and xylene. In addition, two contaminants, methylene chloride and acetone, were also found; however, these are common laboratory contaminants. Accordingly, it is helpful to consider the possibility that the former service station at Young's Produce, the automotive repair shops west of the site, and/or the operations of NWP may have contributed to this contamination in addition to the PCP-laden fuel oil plume.

To examine the areal distribution of these chemicals, a total value for the VOA concentration was calculated for each well by summing the results of VOAs identified above the detection limits. The total VOA results ranged from 1.3 to 3,227 ug/l. The purpose for examining the total VOA concentrations is that it allows for easy characterization of the general VOA distribution on the site, without the need to review individual species. Figure 5-12 presents the total VOAs, in ug/l, for the groundwater samples taken during the preliminary sampling round.

The map contains a number of important features. First, a significantly elevated level of total VOAs was found to be present in the groundwater between NWP and PCG, with respect to the other wells sampled. Because groundwater flows east-southeast across the site, the contamination present in the wells sampled along the western portion of the site may indicate additional contaminant sources other than the fuel oil. On the eastern portion of the study area, the total VOAs are lower; however, it is apparent that the contamination extends beyond free 24.2

r.e. wright as poiates, inc.

Table 5-14 Groundwater Round 1 Volatile Organic Results

		S	7/6a	7						7 64	- market	Z.	[/m	1/6n	- trg/	1/69	1/bn	/ 6n	1/6n	[/6n	/6a	1/6n	l/6n	/§n	7/6n	/6n	1/60	/go	1/63	1/bn	- J	1 60	<u>[/b</u>	/bin	/bi	1/61
66021 R-4 67/30/67 GNOWN 1	1111111	る。	至	S S			훒		翼		<u>S</u>	e E	图	S 富			金		9.9	90.	•	'n	S	· ·	· ·		2	י כיש	~	으	_	2	_	皇	_	叠
/ta		Z.	/6¥	[/en	[/6n	1/6n	/6 _R	. Vên	7	£ € €	1/69	Eg/	ng/j	[/ōn	1/6a				mg/l	[/bn	Mg/l	1/64		#g/]		<u></u>			/6 3	7/60	1/60	EEG/]	1/61	7	1/6n	/6m
	- 11					23											2		2		. 25	8		23				: X					S.			•
84821 R-2(DUP.) B7/30/R7 GHOWAT	14.574	-	\$	塞	25	2	3	2	鋻	8	塞	盈	8	8	86	22	富	a	7.5	8	8	=	-	&	&	7 :	3	율 :	盈	22	2	富	&	2 .	量	<i>1</i> 6
	,				2 5 5	25 49/						25 Eg/1					(/6H 9S	<u> </u>	3 D 49/	75 119/1	25 49/	[/6#		25 49/1				75 mg/			_		-/§	_	_	/dn
86421 R-2 67/30/87 GNDWAT	14341	2	훒	¥	줊	3	憂	至	줊	줊	풀	蓋	蓋	藍	룶	36	爱	ಷ	=	蓋	줊	230	\$	藍	줖	&		蓋	줊	2	ē	鼋	2	E	Ē	24 <u>0</u> 0
			2 Mg/	S 5	₹ 764 8	S #9/	/6n el	[/6n 01	₹ 769 S	S #g/l	761 S	- - - -	\$ ug/	S ug/1	5 ug/	5 ug/	10 ug/l	10 wg/	J 169/	5 kg/1	5 mg/	5 ug/l	1/611	2 Mg/	2 #g/	763	l/6n f	7/5M S	S #g/	76M 0E	10 mg/l	-	7/5m 01	10 Mg/	10 mg/	5 4g/l
17078 197/26/19	1434/0	2.9	2	줊	畜	줎	鞷	哥	Ē	줊	E	7.9	盏	æ	둞	줎	Ē	쿒	* :	Ē	줖	墓	55	爱	æ	en (÷.	E	줖	줊	æ	曼	룚	æ	ස් :	\$
		1.00	S #g/l	5 ug/l	1/6# S	Com S		1/6n 05	S #9/	5 ug/l	5 ug/]	5 ug/l	5 Eg/)	1/6m f	5 mg/l	S ug/l	10 49/1	10 Mg/1	J #9/!	S ng/	5 ug/1	5 ug/	5 mg/1	S ug/l	5 ug/	769 :	1/6n ol	5 Lg/	2 mg/	10 ug/]	10 110/	S #9/	10 ug/	10 ug/1	l/bn ol	J ug/i
86021 IM-3 67728/87 GMDWAT		Ξ	줎	2	蠹	줖	鼋	E	Ž	a	줊	출	爱	<u>9:</u>	줎	줎	藍	童	2.3	蓋	2	富	æ්	8	2	2°8		E	e e	8	æ	a	줖	æ	藍	9.
		760 (5 49/	2 Mg/	5 ug/1	5 ug/l	10 kg/l	10 ug/l	2 ug/]	5 ug/l	2 mg/	5 49/1	5 mg/	5 ug/l	5 49/	l/6n	10 ug/1	10 mg/l] ##/I	5 ug/1	5 ug/1	S wg/]	1/6m S	S ug/i	2 mg/l	/6m (1/55 EL	2 kg/	7 mg/	10 mg/l	10 mg/l	[/ēn s	10 mg/	/6m et	10 mg/1	/6a
84021 184-2 - 67/28/67 62/28/67		~	줎	蓋	鞷	臺	墓	줖	2	蓋	霊	Z	靐	室	蓋	=	8	æ	1.2	蓋	蓋	Ξ	Ē	蠹	蓋		Ē	ਛ	æ	줊	륦	2	룗	ਛ	출	%
		1 197	₹ #g/	1/6a S	5 119/1	5 mg/	76 197	1/6M OI	5 ug/1	1/6n S	5 tig/l	1/6n S	5 ug/)	5 wg/1	5 ug/1	[/63	[/bn ol	[/b# 0]	J B 49/1	1/6n S	S #9/]	5 ug/l	1/6n S	2 mg/]	1/6m S	/6i s	1/6n n1	2 mg/	/ mg/) 8 kg/l	10 119/1	. [/6# S	10 69/1	10 mg/	7€ OF	1/69
86921 nul-1 07/30/87 CHOMAT	143744	-	鞷	富	叠	2	툺		蠹	1	叠	99	鼋	80 8	2	6.2	og G	2	4.2		E	\$	Š	E						7.1	E		E	2	6	45
SITE SAMPLE DAITE MATHERY	WOC LAST 1.0.			INCHEOR DE	Z	MORE TIME	## #	2-CHLOROETHYLVINYLETHER		ROMETHAME	TOETHAME	10E THAME	20£ 1 ME ME	TOPROPAME	CIS-1,3-DICHLOROPROPEME	₩	¥	¥	3K-0R10E	1,1,2,2-1ETRACH ORDETHANE	ETER		226.14 TTBANS-1,2-DICHLORDETHEME	H ORDETHAME	A OROC THAME			250 CACHANS - 1, 3-DICHLOROPROPERE					-	P.E. M. J. HARDRIE		=== ()
" Then at theo-desa		BENZENE	BROYOFORM	CARBON TETRACH DRIPE			(美)(2000年)(美)	2-CHLOROETE	CAL DROFORM	BROYDO I CHI, ORONE THAM	1.1-D1CHLOROETHAME	1,2-DICHLORDETHAME	1.1-DICHLOROETHERE	1,2-DICHLOROPROPAME	113-11,3-011	ETHYLGENZENE	BROHOMETHAME	CHE ORDMETHANK			TETRACHLORDETHENE	225-VZTBLUERE	-2'1-SEPT	227 V. 131,1-TRICH ORDETHAME	LI 2-TRIC	229 V-KICH GROETER		1-6'T-SWIP	251, Vr. 54 TREM	ACETONE	•		2-IEXANDRE	4-PETHYL-2-PENTANDME	VINYL ACETATE	TYLENES (TOTAL
្ ធ និ		200	205 ₩	70¢ V	\$02	208	₽	210 4	211 ₩	212 ₩	214 ₩	215 V	216 ₩	217 4	218 ₩	219 9	220 V	221 ₩	222 ₩	¥ 622	224 ₩	225 V.	226#4	227 4	228	5 22	S 1	9 2 2	2	222	233	254 ₩	235 235 235 235 235 235 235 235 235 235	256 ₩	22	e E

	SAITE SAMPLE DATE MATREX	86021 HAV-2 07/30/87		86021 HAV-7 08/01/87 GNOMAT		86021 HAV-8 08/01/87		86021 HAV-10 08/01/87 GNOMAT	
2	CHPO EL CHIPO-DESC			;		;			
	VOC LAG 1.0. 0	143947		144124		14178		6Z 1991	
203 ▼	BEDZENE	6.2	J ug/1	8	5 49/1	5~	Ilg/I	鼋	5 49/1
205 4	BRONDFORM	Ē	6.8 ug/l	爱	5 49/1	2	5 ug/1	100	5 ug/1
706 ₩	CARBON IETRACHIORIDE	ă	6.8 ug/l	8	S ug/l	줊	S ug/1	줊	1/6n S
707 ₩	CHLOROBENZENE	B 04	6.8 trg/l	#	S ug/i	营	S 49/1		5 ug/1
508 ←	DI BRUMOCHI, OROMETIMAME	2	6.8 ug/l	a 8	/6a ç	25 8	- S 49/	E 8	S 49/
60.	CHE OKOH THANK	E		S 8	760 P.	S 3	동 일 2 :	5	
29 29 20 20 20 20 20 20 20 20 20 20 20 20 20		3	7 m = 7	5	1/68 01	5	1/6m 01	E	1/5m 01
2 2		5 8	76m p. o	E 8	76	5 5	1/ga C	5 5 6	3 09/1
212 4		100	6.8 kg/l	3 8	1/60 5		5 E9/1	돌	7 19/1
717			9.6 ug/1	E	. eg/1	5 8		≨ 8	
215 4			1/6n e. 9	3 2	(g)	E	/60 C	E	. eg/
216 V	_		1/6m 8°9	3	769 C		∑.	3	S .
217 4	_	줊	6.8 ug/l	盏) ng/[É	2 ug/1	륦	2 ug/
218 V	CIS-1,3-DICHEOROPROPEME	爱	6.8 ug/l	Ē	S ug/l	5	S ug/1	E	2 69/
219 ₩	ETHYLBENZEME	1.1	ng/J	Ē	S ug/l	젊	2 ug/l	룚	S 119/
720 V	BRONOMETHANE	叠	[/6n FI	富	10 ug/1	Š	10 mg/1	룚	/6n or
221 V	CHLOROMETHAME	3	- 60 - 1	E	10 mg/}	ਛ	7¢¥ 01	S	760 0€
722 ₩	NETHYLENE CHLORIDE	2	[/6n 6	5.5	1 B ug/l	=	3 8 ug/l	e: -	J 8 49/l
223 V	7 1.1.2.2-1ETBACHLOROETHAME	8	6.8 ug/l	쿒	5 49/1	퓵	5 119/1	줊	5 49/1
224 W	FETRACIA ORDETHEME	줖	6.8 ug/l	盘	5 ug/1	蓋	5 ug/1	震	5 mg/]
225 4	70LUENE	92	rā/J	æ	5 ug/l	8	\$ 49/1	蓋	S ug/1
226 ₩	IRANS-1,2-DICHLORDETHENE	91	1/60	æ. -	; ug/!	3,5	/6m f	எ	2 ug/1
<i>122</i>	_	19	6.8 ug/l	뚪	2 mg/l	3.5	7 m	菱	/6m s
228 ₩	1,1,2-TRICHLORUETHAME	ස්	6.8 ug/l	둂	2 €9/I	E	2 mg/1	E	2 mg/1
∆ 622	TRICH, ORDETHENE	≈ ;		ਛ	/6# S	in i	/6n	E 8	/6m s
<u>7</u> 3	VINTL CHLORIDE	26	14 ug/1	霻	7 ga 61	Ē	1/6n 01	E	1/6m et
^	IRAMS-1,3-DICHLOROPROPEME	80 4	1/6n 8.9	룚	5 ug/	蓋	\$ ug/	출 :	. 19/ 1/6/ 1/6/
<u>₹</u>	SITREME	3	6.9 ug/l	줎	2 ug/l	e e	Z ng/	륦	2 EQ/
252	/ ACETOME	%		8	76n e1	E	7 m	를 :	1,6g 01
5 23 ♦	2-BUTANDME	8	14 ug/1	8	10 49/1	줊	10 ug/	Ē	16m 01
<u>₹</u>	CARBON DISUMFIDE	5	6.8 mg/l	룚	S 119/	룚	1/6n S	줎	2 mg/
2SS W	2-HEXANDRE	ස්	/6n	爱	10 mg/	륦	16 eg/	E	10 trg/1
3 %	4-HETHYL-2-PEHTAMOME	富		2	- Marian	જ	10 mg/		/6n e:
257 V	VINTL ACETATE	8	1/6a)1	E		를 :	1/6n 01	e	
∆) XYLEMES (TOTAL)	240	1/6a		1/60 \$	털	1/60 5	Ę	2 119/1

Groundwater Round 1 Volatile Organic Results

Table 5-14 (Cont'd)

r.e. wright associates, inc.

existing monitoring well network (well HAV-07). As shown on Figure 5-12, the area around the PCG property lacked monitoring points to further define the extent of contamination. For this reason, four of the six cluster well sites were drilled on the PCG property so as to better establish the extent of groundwater contamination.

For two reasons, the data presented on the total VOA map were not contoured. First, it is believed that the total VOA values presented on the map may vary significantly as a result of the variety of sampling methods employed during the preliminary (Round #1) groundwater sampling round. Second, because geology in the vicinity of some of the existing wells is either uncertain or unknown, it is unclear whether or not the groundwater samples obtained were composite water-bearing zone samples or not. Therefore, because either or both of these points would alter any delineation of a contaminant plume, an interpretation is made in Section 2.3.5.2 using Round #2 groundwater chemistry data from both the existing and new monitoring wells.

5.3.5.1.3 <u>Base Neutrals/Acid Extractables</u> - Groundwater samples from the 10 selected existing monitoring wells were analyzed for base neutral and acid extractable (BNA) compounds. The results of this analysis, shown in Table 5-15, indicate substantial groundwater contamination by BNA compounds. The most elevated BNA compounds identified in these samples are, naphthalene, phenanthrene, 2-methylnaphthalene, and pentachlorophenol.

r.e. wright as clates, inc.

Table 5-15 Groundwater Round 1 Base Neutral/Acid Extractable Results

	3118 31MWS			12021		1200 E-#		1209A		R-2		15051 R-2(DUP)		8-4 R-4	
8	THE STATE OF THE S			EMDIEN I	_	LANGALA TANGALA		LANGAS.				L WAREN		AND	-
5	70000			97767		877073		45.164		4 21777		16361			
		\$710M				143401		2/5571				2000			
9	ACCESSOR SEED			蓋	/si &	\$		2	[/聲 兒	230		蠹		Ē	
4:02 B	ACEMAPATHILEME	8	R	2	76 Rd/	Ē	 ∕§n ₽	麗	_	鼜		藍		蓋	
8 007	AN THRECE WE	091		줊	_	줖	学 是	줊		2		蓋		종	
		61	***	<u>s</u>		 66	20 mg/l	æ		臺		蓋		蓋	
8 90	_	3.4	_	蠹		藍	7.5m 8.	쿒		\$		æ		줊	
		5.2	J ng/	E	76n e2	E	/6 9 €	麗	760 €	室	1/6m 00+	蓋	200 kg/1	æ	
8	-	줎	R	Æ		藍	三	ਛ		Z				E	
	_	5.2	_	ਛ		3	75m 92			墓		ਛ		臺	
410 B	BIS(-2-CHLOROETHOXY METHAME	8	2	룶		줊	76m 92	줊		爱		鼋		룗	
# #	BIS(-2-CHLORDETHTL)ETHER	8	R	ਛ		ਛ	76M €	藍		줎		a		줖	
	BIS(2-CHLORDISOPROPYL)ETHER	ē	8	\$		쯢	7 2 2	줊		ਛ		Ē		Ē	
413 8	BIS(2-ETHYLHEXYL)PHTHALATE	2.8	-	7.8		5.6) mg/	7.6		줊		a		8	
		E	೩	룶		룚	% %	æ		2		鞷		출	
415 8	BUTYL BENZYL PHTHAN ATE	10 2	8	ਛ		<u>1</u>	20 49/1	蓋		2		鼍		藍	
8 917	2-CH ORDRAPHINALENE	100	೩	æ		줎	70 mg/l	륦		蓋		E		줊	
417 8	4-CHEOROPHENTI - PRENTLETHER	8	2	蠹		藍	7 6m &	副		蓋		Ē		훒	
418 B	CHRYSENE	22		룙		爱	20 mg/l	æ		蓋		\$		墓	
419 8	DIBENZ(A,H)ANTHRACENE		R	줊		쿒	20.ug/	룚		藍		蓍		줊	
1 02 1	1,2-01CHLOROBENZEME	8 8	8	墓		2.8) wg/l	囊	₹ 100 100 100 100 100 100 100 100 100 10	ž		\$		Ē	
451 B	1,3-DICHEOROBENZEME	90	2	臺		2.2	J #9/]	쿒		藍		臺		喜	
8 ZZ)	1,4-OfCHLOROBENZENE	8	೩	盏		Ē	70 mg/J	憂		롩		줊		æ	
423 B	3,3*-DICHLOROBENZIDINE	E	\$	줊			() ng/]			Ē		E		룚	
424 8	DIETHYLPHINALATE	8	R	蠹		룗	20 mg/	氢		æ		E		æ	
425 B	DINETHYL PHINALATE	E	2	S	_	æ	20 Mg/]	룚		墓		Ē		를	
426 B		8	2	룖	기 영 연	줊	29 mg/J	<u>ක්</u>		蓋		룙		叠	
4277BBB	on 2,4-DIMITROTOLLEME	56	æ	렱	-	줊	20 49/1	8		E		E		줊	
H	Contraction of Contra	-		Š		ā		S	-	2		2	_	æ	
<u> </u>	OI-M-OCITY PHINALATE	ස් ස් 	7/5n 62	E	1/sin &	ਛ	7/6m 02	로	/sis	2	1/6n 00)	2	200 ug/l	2	
U															
0 ;															
2 !	•														
}															
7															

r.e. wright associates,

	Acid Extractable Results
Table 5-15 (Cont'd)	e Neutral/Acid
rable	S
	E.
	Round
	Groundwater

			•	•		Ę					
		66021	12098	86021 ****	86021	86021 P-3		86021		86021	
		1-88 - 00/00/CV	7-MA	5-842 02/30/10	07.00/00/CD	7-3 7-3-10-7-0		1 - 2(DUF)		F-7	
		6404AT	CHOWAT	147049 147049	CHOURT			19/05/10		STORY S	
8	CHPO CL CHPO-DESC										
	ACID EXTRACI./BASE NEUT. LAB ID #	14123	113118	143469	143470	14159		144171	ı	14163	
# TE7	TOTAL DESCRIPTION OF THE PROPERTY OF THE PROPE	0	501 20 ng/f		801 20 no/1	!!		**		E	20 sea/]
432	FLUCKE	-	6.6 Jug/1) m (7/55 PZ
8	3 HEXACHLOROBENZENE	2	೭	2	2						20 ug/l
434 B	3 HEXACHLOROBUTADIEME	2	2	2	2						20 ug/l
135 8	HEXACH, OROCYCLOPENTADJENE	2	2	2							√6n 02
436 B	1. HEXACHLOROETHAME	2	2	ನ	2	-					3/6m e2
137 8	3 INDERO(1,2,3-CD)PTRENE	≈ :	R :	≈ :	2 3	193 E			760 mg/		7 2 2
		₹'	2	R	₹ \$						1/6m e2
		340 U Ug/I			ROT 20 18971	- AG	1,64 1,04 R		760 FE		2 E E
70	MANAGEMENT TO THE POPULATION OF THE POPULATION O		3 8	2 8	: 8						20 Mg/
	MANUAL MA	2	2 8	2 8	: 8	90 0			760 007		76m &
=	PHENAMITREME	–	_	2	2						20 Mg/
445 B	PYREME		2	2	2						76m 02
446 B	1 1,2,4-TRICHLORDBENZENE	2	2	2	2						755 82
	_	೩	2	2	2						20 ug/l
475 8			≈ '	2	2	90°			200 ug/l		76m 82
476 B			-	2	2						1/6 <u>1</u> 22
477 8	2-HEIHALMANIAKENE	- :	3	:	≅ ;	-		•			76m ez
8 8 9		2 2	2 3	B §	2 5						
0 007	S G-WITKEWARL INC.	3 5	3 5	3 2	3 5						3 2
3 9	A THE ROTAL LINE	BDL 70 ug/1	801 100 mg/1	80t 100 ag/1			(7) (2)	-	200 mg/l		. (*) 2 2 3 8
602 ▲	2,4-DICHLOROPHENOL	8	2	8	8						20 mg/l
€03	1 2,4-DIMETHYLPHENOL	2	2	8	2						/g 8
3	4.6-DINITRO-2-NETHYLPHENOL	2	울	8	2			_			
€ . SO :	2,4-DINITROPHEMOL	2 8	<u>s</u>	2 8	8 8	-					5 5 8 8
3 3	* C-WINDSDAY WIND	_	ર દૂ	3 5	3 2						7 (A)
9	A - CHLORO-3-METHYLPMEMOL	2 8	_	2 8		•	0 49/1 0 49/1	-			2 m
€09	PENTACHLOROPHENDE	3		_	2						76m £
¥ 019	PHENOL	2	8	2	2						76m 02
₹ = 9	1 2,4,6-TRICHLOROPHEMOL		2	ද :	2	S :					\S
620	2-METHYLPHENOL	2	2	2	2						
622	A HETHYL PHENOL	ຂຸ				•			76m 002		769 S
625	FENZOIC ACIO		2	2	2						7 to 12 to 1
929	A.A.A.S-TRICHLOROPHENOL	2	8	2	8		- Z		-		1/6E 8
- '	0 1										
- '	0 1				7						
	2										
-	-										
	8				,						

r.e. wright as ociates, inc.

Table 5-15 (Cont'd)
Groundwater Round 1 Base Neutral/Acid Extractable Results

	SITE SAMPLE SAMPLE BATE MARREY	84021 BA9-2 07/30/87 CHDMAT	-~-	\$4021 WW-7 \$4/01/87		84021 HW-8 66/01/87 GHOHAT		86021 HAV-10 08/01/87 GMOMAT	9
5	CHES CT. CHES-DESC								
	ACID EXTRACT./BASE MEDI. LAB TO #	14169		14132		9 2 2		14158	
		***************************************		11		1144		11 17 14 14 19	
101		360	1/64/	蓋	/fm 紀	₩.	全	8	7章 兒
402 B	B ACEMAPATHYLENE	蠹	2000 49/1	룗	20 Mg/J	藍	1/69 8	鞷	20 mg/
£63 €	S ANTHRACENE	3	2000 ug/l	줊	<u> </u>	氢	S S	藍	76y 82
\$	9 BENZO(A) ANTHRACENE	3	2000 ug/]	Ž	20 ug/l	룦	<u>7</u> €	줊	大雪 見
36	BENZO(A JOYNÉME	<u>8</u>	2000 ug/l	爱	76m 02	æ	之 (2) (2)	富	で見る
407	B BENZO(B)/FLUORANTHEME	S	2000 119/1	墓	20.ug/	E	76n 82	3	罗图
8	D GENZO(G, H, L) PFERTLEME	2	2000 Mg/1	黨	76m 02	룚	20 Kg/]	富	75m 62/
Ş	B BENZO(K FLUCKANIZEK	2	2000 ug/l	중	/ 第 紀	Z.	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	줎	20 mg/l
2	815(-2-CHLOROETHOXY METHAME	<u>8</u>	2000 ug/l	霱	1/64 92	æ	76 120 120 120 120 120 120 120 120 120 120	롩	20 kg/
=	3 BIS (-2-CH.OROFINT, ETHER		2000 ug/l	蓋	20 ug/]	뙲	7 6 7	3	20 kg/l
412.8	BIS 2-CHORDISOPROPYL ETHER	8	2000 ug/l	룚	7 60 €	逶	- 名	Ž	全
413 8	BIS(2-ETHYLKEXYL)PHIMALATE		2000 ug/l	2.6) ug/]	6	J wg/]		75 g
##	4-BROKOPIKENTL-PIKENTLETIKER	<u>a</u>	2000 ug/1	鼋	7gm 82	룚	 	蠹	\ <u>a</u>
	BUITLEENZYLPHIHALAIE	富	2000 ug/]	200	20 mg/J	藍	7g &	줊	20 mg/J
416 B	2-CHLORDMAPHTHALENE	<u> </u>	2000 ug/]	竇	20 mg/l	졅	2 mg/	룚	76n &
417 8		蓋	2000 ug/l	\$	20 mg/J	줊	% €/I	蓋	70 mg/l
884	CHRYSENE	쿒	2000 ug/l	륦	20 ug/]	둞	70 mg/l	æ	20 lig/l
419 B	DIBENZ(A,H)ANTHRACENE	8 6	2000 ug/l	쯢	29 mg/J	乭	20 mg/J	蓋	20 mg/1
420 B		90r	2000 ug/l	至	20 mg/l	줖	20 mg/l	叠	29 mg/
451 B	3 1,3-DICHLOROBENZEME	10	2000 ug/l	色	76m 02	፸	79 e3/	줊	20 tg/J
422 B	1,4-DICHLOROBENZENE	藍	2000 ug/l	줊	20 mg/]	藍	76m 02	2	20 #g/l
423 B	173	靈	4000 ug/l	8	40 mg/l	젌	10 mg/!	E	1/6a 07
454 B	-	8	2000 ug/l	蓋	20 ug/l	E	20 ug/l	8	20 ug/l
425 B	DINETHYL PHIMALATE	器	2000 ug/l	霊	20 mg/	藍	20 mg/s	a	20 mg/
8 92)	DI-H-BUITLPHIKA ATE	囊	2000 49/1	ਛੱ	76m 92	සි	76a €	2.2	2 mg/l
427 ⊞	3 2,4-DIMITROTOLUENE	\$	2000 ug/1	쿒	Z0 449/1	줖	20 mg/l	뮲	20 49/1
428 8	3 2.6-DIMITROTOLUENE	藍	2000 110/1	墓	20 49/1	量	1/6n 02	8	20 119/1
8.2		E	2000 mg/l	E	20 trg/	8	20 mg/1	8	75a e2

r.e. wright associates, inc.

	3118 310MNS	86021 HAV-2	- 61	1207 1447-7		12098 HAV-8		86021 BAV-10	
	DATE	CHOMA CHOMAT		CEDIAN (B./101/8/		CHOWAT		PANTA SADIMI	_
	CHILD CL. CHPO-DESC								
	ACID EXTRACT./BASE NEUT. LAB 10 #	14160		144132		14140		144158	
		## ## ## ## ##		11	•	# # # #	•	***	;
131 B	FLUORANTHEME	룖	2000 ug/Ì	盏	20 ug/	鞷	761 02	줖	.ē
435 B	FLUORENE	3) ug/)	쫉	7 m 8	鼋	76m, 62	藍	ຂ
433	HEXACHLOROBENZENE	盈		至	70 mg/J	줊	76 RB/	E	2
#34 B	HEXACHLOROBUTADIENE	2	2000 ug/1	륦	76n &	줊	29 Eg/J		2
435 B	HEXACHLORUCYCLOPENIADIENE	á		80K	20 mg/l	盒	7 m 8	ē	R
436	HEXACHLORDE THAME.	줊			20 ug/l	E	76n 92	E	Ž
437 B	INDERO(1,2,3-CD)PYRENE	2		S	76m 02	叠	76m 02	2	2
8 80	1 SOPHOROWE	Ē	2000 ug/l	#	20 mg/	E	7/53 PZ	E	ຂໍ
439 B	NAPHTHALEWE	3800		Ē	7 mg/	E	76ii 02	E	≅:
# O#	MITROBENZENE	8		훖	76ii 82	를	76m 62		2
442 8	M-MITROSO-DI-M-PROPYLAMINE	Ē	2000 ug/l	富	_/6i ≈	藍	76m 02	E	2
# C#	H-MITROSODIPMENYLAMINE(1)	8		쯢	/6n 02	8	70 mg/l	E	2
44.8	PHENANIMPENE	1500) ug/]	륦	7/bn 02	藍	20 ug/l	5	Ž.
445 B	PYREME	200 200		ਛ		쫉	20 ug/]	ē	2
446 B	1,2,4-1PICH_OROBENZENE	E		臺	20 mg/]	줖	76n &	æ	ຂ
474 B	BENZTL ALCOHOL	펉		줊	20 mg/J	를	1/60 02	8	ຂ
475 B		ē	2000 ug/1	蓋	7/6n 02	藍	7/6m 02	2	2
476 B	DIBENZOFURAN	220	1 ng/l	爱	7/6n ez	Ē	20 mg/]	富	ຂ
437 B	2-METHYLMAPHTHALEME	2000		Ē	79 mg/	E	29 EB/J	a	ຂຸ
#78 B	2-HITROAMILINE	.		륜 .	76 EQ.	ਛ ਵ	76 60 7	중	8
#3.8 #3.8	3-#1180##ILIME	3		E	1% 180 180	E	00 mg/	E	<u>s</u>
80 80 80	4-NITROAMILINE	සු		둞	1/6m 001		76 60 80	e i	2
₩ 109	2-CH, ORCEPHENDL	ਛ ਂ ?		2	/6n 02	€ 7	₹	_ ≨ 2	ຂຸ
€02 A	2,4-DICHLOROPHENOL	E		E	7 2 2	E 8	76 R	\$ 8	2
603	2,4-Diff. HTLPREMM	E	769 007	E 8	7 E	E 8		5 8	2 5
3 4	9,6-UIMIFRU-Z-REINILFREMUL 3,4-DIMIFRU-Z-REINILFREMUL	E E	1/60 00001	E	150 Eg.	E	2 E	E	3 2
3	クーを1.6/20年度を	2		蠢	70 mg/	叠	20 uq/l	룡	2
¥ /09	4-KITROPHENOL	震		至	1/6n ed/	E	100 mg/l	€	8
₩ 809	4-CHL080-3-METHYLPHE#0L	906		藍	70 89/1	룚	20 mg/l	줊	ຂຶ
₹ 609	PENTACHLOROPHENOL	13000		\$	20 mg/l	0001	1/6n Q	2	Ξ
€10 ₩	PHENOL	8	2000 ug/l	墓	[/6n 0₹			藍	2
4 119	2,4,6-TRICHLOROPHENOL	8	2000 ug/1	盘	7/6n 02	줊	20 mg/J	E	2
620 ₼	2-METHYLPHEMOL	8		펉	7∕5¶ &	룚	1/6m 02	ਛ	ž
622 ♠	4-HETHYLPHEMOL	쯢		2	20 mg/]	롩		E	ຂ
625 A	BENZOIC ACID	<u>8</u>	1/6n 00001	Ē	100 mg/	줖		æ	8
929 ₩	2,4,5-TRICHLOROPHENOL	80 6	10000 ng/]		100 ug/1	룖	100 ug/l	흁	2

Groundwater Round 1 Base Neutral/Acid Extractable Results

Table 5-15

A total BNA map was produced in the same fashion as the VOA map described in the previous section, and is presented here as Figure 5-13.

The pattern of total BNA contamination in groundwater appears to be similar to that for total VOA contamination. The groundwater between NWP and PCG has significantly higher total BNA concentrations than other wells sampled. The BNA compounds are likewise not controlled and extend outside of the monitoring well The moderately elevated BNA concentrations along the northern part of NWP also indicate that the extent of BNA contamination cannot be entirely determined by the present monitoring network, although it appears to extend beyond the NWP property in this direction. The PCG property also lacked the monitoring wells to delineate the dissolved contaminant plume In addition, the lower BNA value in HAV-07, with respect to well HAV-08, downgradient of the storm sewer may be the result of well placement rather than reflective of any influence of the storm sewer on the contaminated groundwater This topic is addressed in later sections. For reasons presented in the previous section, the total BNA data were not contoured.

5.3.5.1.4 <u>Pesticides/PCBs</u> - Pesticide and polychlorinated biphenyl analyses were performed on water samples taken from the 10 selected existing monitoring wells during the preliminary sampling round. The results, shown in Table 5-16, indicate that PCBs were not detected in any of the groundwater samples taken. Three pesticides, aldrin, beta-BHC, and dieldrin, were detected in five of the 10 wells sampled. Two of the wells, R-2 and HAV-02, had pesticide concentrations significantly higher

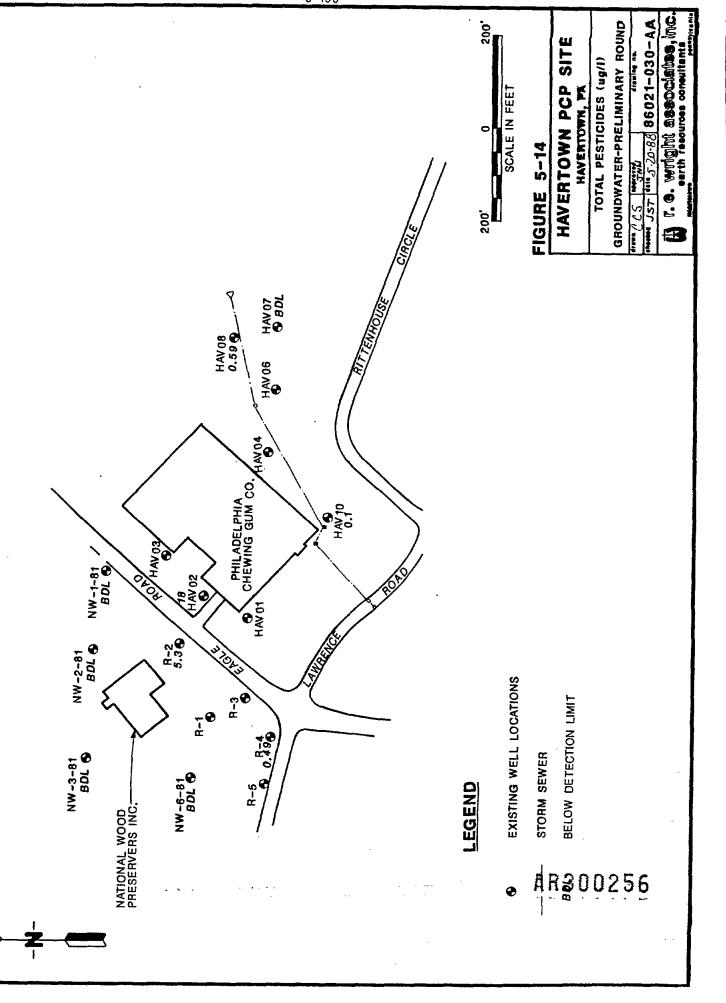
r.e. wright as ciates, inc.

	# 7 6 5		BOL 0.05 kg/l BOL 0.05 kg/l	FOC 0.05 Wg/1	0.05 44/1	0.1 mg/l	0.1 kg/l		0.05 ug/1	0.1 19/1	0.1 40/1	0.05 kg/l	0.05 ug/l	0.5 ug/l	0.5 ug/]			- ;	1/50 0.0	- 5.0	<u>-</u>		2 mg/]	10 ug/1
	84921 R+4 07/30/87 EHDWAT	14163	E E	# #	E 3	E E	€ 8	9 6	量	젊 8	3 3 5	富	률 :	E 2	E	룚	줊 :	E 8	E 6	E	25	14149	E	6
			0.2 kg/l	0.2 49/	0.2 wg/1	0.4 119/1	1/64 1.0	7.0	0.2 mg/l	0.4 49/1	/68 T.O	0.2 49/1	0.2 49/1	7 Feb 7	2 (4)	2 mg/l	2 ug/i	/65 ÷	7 (ga 7	2 mg/	0.4 49/1		1/64	1/60
	64021 R-2(DUP.) 97/30/87 GADMAT	1417	22	E E	E	E	5 3	E	叠	2 3	€ €	量	중 (E	e e	줖	E	E 8	E 8	E	囊	144151	82	=
esults			1/6m 1		764 ·		2 E	2 Eq./]/6a	2 19/1	1/5a 7	- mg/	1/60 1	 	[/si 0]	10 ug/1	10 ug/	1/6# 02	2 2	1/65 07 1/67 01	2 ug/l		1/6W	10 wg/1
/anide R	84921 R-2 07/30/97 GHDMAI	144159	S. S.	<u>ਛ</u> ਛ	a		3	E	줊	2	É	2	젊 :	E 8	E E	藍	蓋	a	3 8	E	줊	146145	310	8
e and C			0.1 #9/1 0.1 ug/1	6.1 1 2/2	0.1 49/	0.2 #9/	0.2 49/1	0.2 te/l	0.1 vg/l	0.2 mg/1	0.2 16/1	0.1 mg/l	0.1 ug/l	- r	[/6#	1/60 [/Bn	2 19/1		/6n	0.2 ug/l		<u>~</u>	10 eg/1
id Greas	84021 194-4 194-7	1373	E E	를 를	\$	E	3	E	8	E		5		E	E	졅	Z.	a i	8 8	3 3	8	143478	5.1	\$
Table 5-16 CB and 011 an	≂?≈ ≡		0.05 trg/	0.05 44/1	0.05 wg/4	1.65 E. 1.69/1	1/2 - 1/2 -	/ (m	_			0.05 mg/l		_		0.5 ug/l			1,52 0.0	0.5 ga/	0.1 49/1		2 mg/1	10 49/1
Table /PCB an	84021 IM-3 07/28/87 GWMAI	113469		E	E		2	E	8	E			2	ස් <u>අ</u>		200		ස් i	5 8	E E		143477		蓋
sticide	86021 NS-2 28/87 28/87	# :	A 0.5 kg/l	X 0.5 Eg/1	(0,5 kg/]			7/08	. 5.			(0.5 ug/)	t 0.5 ug/l	, S ug/I				_		769 S	_	-0	: (2 mg/l	1/6n 01 1
nd 1 Pe	84021 MX-2 07/28/07 GHDMA1	899CP1		. .	28.5	3 2	E 5															143476	BE	8
er Rou	ET 0 =		0.2 ug/l			7 (A 2 (A) 2 (A)) P P P P P P P P P P P P P P P P P P P	0.2 ug/	0.2 ug/	2 #9/	2 49/1	2 49/	2 ng/	75 mg/) h	/ ma /	0.4 49/		1/64	10 49/1
Table 5-16 Groundwater Round 1 Pesticide/PCB and Oil and Grease and Cyanide Results	84021 M4-1 03/30/87 CMOGA1	676271	2 2	E E	2	E S	2	E	출		ž E	E		E		8		E 1		E	2	143950	21	
J	STRE SAMPLE BANE MANE	=	10 11 10 11 14 13													•						9	## ## ## ## ##	
		PESTICIDE/PCB LAO 10 0	的复数计划 化苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯																			OIL & GREASE LAB ID B	13 12 13 13 14 14 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
	ú	FESTIC							SULFAN	SEFAN			EPOX (DE								*	91,	EASE	
	2530-64E0 CT CHAD-DESC	-	AL DRIVE AL PER-BEC	Services:	DELIA-BEC	1.450	300-1-1		ALPHA-EMDOSULFAN	BETA-ENDOSULFAN	EMDUSOLIMI SULTRIE FAMOTA	HEP TACHLOR	HEPTACIALOR EPOXIDE	PCB-1242	PCB-1234	PCB-1232	PCB-1248	PCB-1260	CB-1016	7244 D. P NETHONY CHIEF	734,83 EMDRIN KETONE		11. AND 69	YANIDE
	CMP CL		a. a.	2 Z	_		-	-			713 6 77		717 P. H		7307			723 6	1		736.20	00	103 P OIL AND GREASE	

r.e. wright associates, inc

Table 5-16 (Cont'd) Groundwater Round 1 Pesticide/PCB and Oil and Grease and Cyanide Results

•		SITE SAMPLE DATE	86021 HAV-2 07/30/87 GMD4A1		86021 NÁV-7 08/01/87 GWDVA1		86021 RAV-8 08/01/87 GM/01/87	em 60 b. em	86021 HAV-10 08/01/87 GMMA1	-0,-
	CHO CL CHPO-DESC									
	PEST	PESTICIOE/PCB LAB 10 \$	091111		14132		141140		144158	
	H H H H	+ + + + + + + + + + + + + + + + + + +	12 12 14 14 14		11 11 11 11 11 11 11 11 11 11 11 11 11		13 14 17 13 14		11	
701 P	AL DRIN		3 6	1/68 [翼	0.05 kg/l	8	0.05 mg/l	囊	BOL 0.05 ug/l
702 P	ALPHA-BHC		盏	1 09/1	E	0.05 ug/l		0.05 ug/l		9.05
763 ₽	9E1A-9K		92	[/6m	룚	0.05 mg/l	0.59	<u></u>	<u>:</u>	-
704 P	- GANNA-BHC		蓋	7 4 0 -	1	0.05 ug/l	룚	0.05 ug/l	藍	0.05 mg/l
705 P	DEL 1A-BHC		5	1 ug/1	70E	0.05 ug/l	蓋	1.05 ug/l	蓋	0.05 mg/l
786			33	10 09/1	2	0.5 ug/l		0.5 wg/}	Ē	0.5 49/1
707	4,4*-001		108	2 mg/J	豎	0.1 ug/]		0.1 mg/l	6 6	0.1 ug/l
708	300-,11		200	2 ug/l	8	0.1 ug/l		0.1 49/1	룗	0.1 kg/l
709 P	7,1,-000		19 19 19 19	2 kg/l	叠	0.1 ug/l	뤁	0.1 mg/l	爱	0.1 ug/l
710 P	-		108	2 ug/]		0.1 ug/]		0.1 tg/l		0.1 ug/l
711 P	ALPHA-ENDOSULFAN		30	- - -	_	0.05 mg/l	量	0.05 ug/l		0.05 ug/l
712 P	BETA-EMDOSIA FAN		6	2 ug/l	텶	0.1 ug/l	E	0.1 ug/l		0.1 ug/l
713 P	ENDOSULFAN SULFATE	7		2 mg/J		0.1 mg/l	6	0.1 49/]		0.1 trg/]
714 P	_		3	2 ug/1		0.1 ug/l		0.1 ug/1	æ	0.1 49/1
716 P	HEPTACH CA		1	1 ug/]		0.05 ug/l		0.05 ug/l		0.05 ug/l
717 P	HEPTACHLOR EPOXTOE	~	40	1 mg/1	藍	0.5 Eg/l	룚	0.5 49/1		0.05 kg/l
718 P	PCB-1242		<u>5</u>	10 ug/1	藍	7/6n F	Ē	/69 +	E	0.5 ug/l
719 P	PCB-1254		60	76n 0≳	를	0.5 ug/l	룚	0.5 kg/l	蓋	/6m
720 P	PCB-1221		30	10 mg/1	8	0.5 ug/l	쫉	0.5 tg/1	줊	0.5 mg/l
72I P	PCB-1232		줊	10 ug/1	2	0.5 ug/l	盘	0.5 ug/l	叠	0.5 ug/l
722 P	PCB-1248		80	10 mg/l	蓋	1 mg/l	줊		E	0.5 tg/l
723 P	PCB-1260		Ē	20 mg/l	200	0.5 ug/l	룗	0.5 ug/l	출]/6n
724 P	PCB-1016		200	10 mg/1	富	1 wg/	줊		줊	0.5 ug/l
725 P	TOYAPHENE		줊	20 ug/l	Ē	0.5 ug/l	鼍	0.5 49/1	E	1/6n
726 ₽	P,P'-METHOXYCHLOR	•	E	1/6m OI	88	1 ug/l	롩	1 mg/	蓋	
739 P	EMDRIM KETONE		- 56	2 ag/1	99	0.05 ug/l	<u> </u>	0.05 ug/l	줖	0.1 ug/l
	=	OH A SPEASE LAB TO 9	144147		14131		14133		144143	
	: !!	4 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1							11 11 14 14 14 14	
1033 C	OIL AND GREASE		230	mg/l	威	2	2.2	[/6 a	Ē	2 # g/]
3 1001	1001 C CYANIDE		88	10 ug/l	줊	10 ug/1	BROKEN	BY CCL	鼋	10 ug/l


than other wells. Figure 5-14 depicts the total pesticide concentration in the 10 selected monitoring wells during the preliminary sampling round. A contour map was not produced for reasons stated previously.

5.3.5.1.5 <u>Cyanide and Oil and Grease</u> - Cyanide and oil and grease analyses were performed on groundwater samples from the preliminary sampling round. The results of the cyanide analysis are also provided in Table 5-16. The cyanide levels were below the 10 ug/l detection limit in all of the samples except for the duplicate sample taken at well R-2. At R-2, the duplicate sample contained cyanide at a concentration of 14 ug/l. It is uncertain why this occurred.

The oil and grease results are also presented in Table 5-16. A plot of the results is shown on Figure 5-15. Of the five samples in which oil & grease were detected, concentrations are again highest in groundwater between NWP and PCG. Owing to the limited data and the reasons previously mentioned, the data for cyanide and oil and grease were not contoured.

5.3.5.1.6 <u>Dioxins and Dibenzofurans</u> - Groundwater samples from nine existing monitoring wells and one oil sample from R-2 were analyzed for dioxin and chlorinated dibenzofuran isomers by California Analytical Lab, under the direction of the EPA. Two groundwater samples, HAV-07 and NW-1-81, were broken in transit to the analytical lab and could not be analyzed.

The primary isomers of dioxin found in groundwater samples were octa-, hepta-, and some hexa-, chlorinated dibenzo-p-dioxin. Only one well, NW-2-81, had the tetra-dioxin group identified at a concentration of 0.11 parts per tripling (ppt). The 2,3,7,8

isomer was below the detection limit at this site. It was observed from the results of this analysis, Table 5-17, that wells with oil in them contained greater amounts of the hexa-dioxin isomers, well HAV-02 in particular. Further comparison of the results from HAV-02 and that of the oil sample indicate that it is likely that the groundwater sample taken at HAV-02 contained substantial amounts of emulsified oil. It is believed that the groundwater sample at HAV-02 contained suspended amounts of oil because the sampling method was bailing. To ensure that this would not recur in the following sampling round (round #2), a more uniform and consistent sampling procedure was employed using peristaltic pumps and Well Wizards.

The total concentrations of dioxin isomers were plotted on Figure 5-16. Eliminating the value at HAV-02 because of oil contamination in the sample, the highest dioxin concentration was found at well R-2 (1844.94 ppt). Well NW-2-81 also contained a substantially higher amount of total dioxin isomers (696.71 ppt) than other sampled wells. Because of the variety of sampling methods which were necessary during the preliminary sampling round, some variation in analytical results is anticipated. However, no quantification of this variance is possible.

The majority of the dibenzofuran isomers were identified in the groundwater samples taken during the preliminary sampling round. No sample results were obtained again on wells HAV-07 and NW-1-81 because the bottles were broken in transit. Table 5-18 contains the results of this analysis. Wells with oil in them, R-2 and HAV-02, contained the greatest amounts of dibenzofurans. NW-2-81 also had relatively high values; however, no product was observed

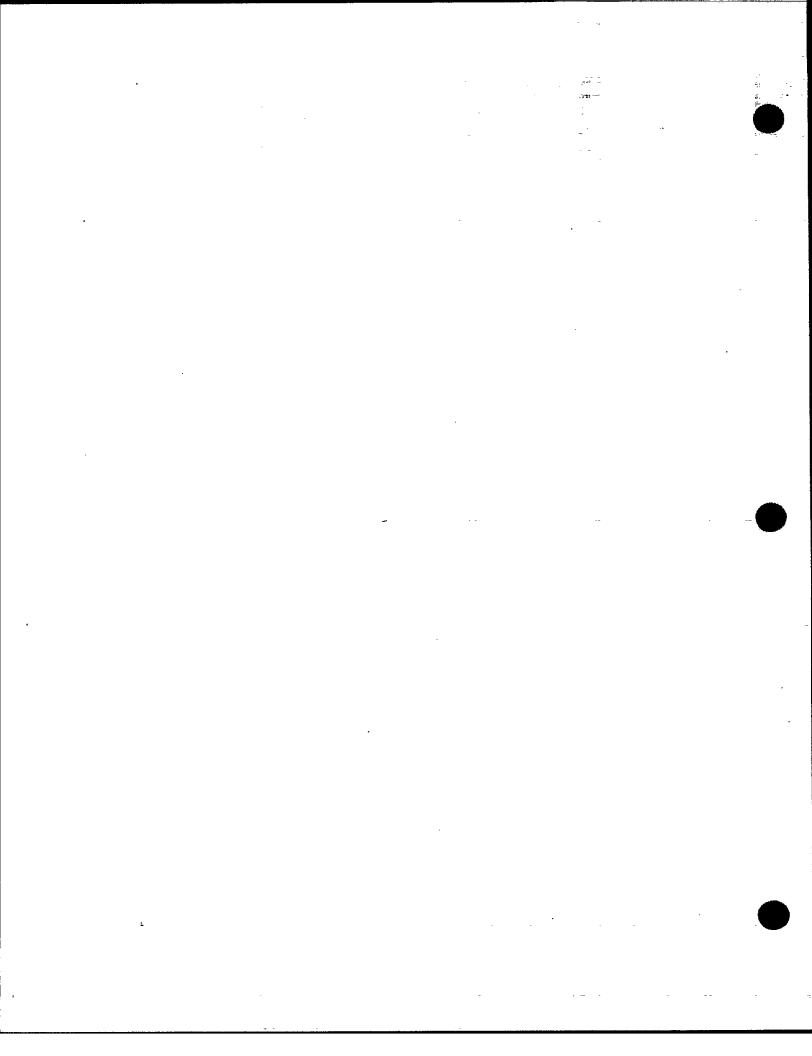

r.e. wright as clates, inc.

Table 5-17 Groundwater Round 1 Dioxin Results

86021	84021 ************************************	86021	3 3	86021	96 021	86021	86021
_		30648-IRI		<u>.</u>	3648-12	306.18-9	30648-10
BROKEN	TEAMS!		BROKEN 11	TRAMSII	19-02-8	8-19-87	8-19-87
					£	3	\$
ىد		BOL 0.081 ppt				BOL 0.04 ppt	BOL 0.031 ppt
يد		80t. 0.081 ppt			9.048		
~		#Dt. 0.26 ppt			0.17		BOL 0.13 ppt
4.0 ppt					* :0	:	
*		ESC 0.17 pot			4.9		80f. 0.13 ppt
*					0.4		
*							
فسد					影 皇		
**		BM. 0.59 ppt					4.2 ppt
<u>~</u>					108 pot		
		80t. 2.5 ppt					16 pot

r.e. wright associates, inc.

	86021 R-4 30448-11 B-20-87 WA	BOL 0.029 ppt			89. 0.10 ppt			2.0 ppt		8.6 pot
esults	8-021 R-2 3048-14 8-20-87				Half U.18 PPT					
Groundwater Round 1 Dioxin Results	86021 R-2(0UP) 3048-13 8-20-87	0.079	2.0	8 6	15.5 ppt	-	1.2			
Groundwater 1	8002) R-2 3048-28X 8-25-97 Frodict	9.	5.6	ان ف	280 Ppt	¥.9	2:1			
	SITE: POINT: LAB 10 A: GC/NS DATE: MATRIX:									
			2378 16		00318 H1C00	123478 HxC		菱	1234678 场	8

r.e. wright as ciates, inc.

Table 5-18 Groundwater Round 1 Dibenzofuran Results

86021 86-6 306-10 8-19-97		0.028 ppt	0.1 75			줊					ž			鼋
⇔ <u>₹</u> ?? 6 9		<u> </u>				0.049					3.7			5.2
84.021 NM-3 304.48-9 8-19-88		80L 0.039 ppt 80L 0.039 ppt	BOL 0.76 ppt	•		BOL 0.063 ppt		•			BOK 110,42 ppt			BOL 0.54 ppt
84021 FM-2 30648-12 8-20-87		0.11 ppt 801 0.048 pot		85.	8 .8			8		0.25				
86021 MI-1 IM · [RAMS] [
86.021 FF 1-1														
BROKEN							•							
86021 HAV-8 30648-181 8-19-87		80t 0.032 pot 8N 0.032 pot				890. 0.12 ppt					BDL 0.59 ppt			BOL 0.75 ppt
TRANSIT														
84021 HAV-7														
BROKEN														
96921 44V-2 30648-38X 9-26-87 WA		0.9 ppt	i i	至	3. Z	盏	蓋	6.5 ppt	臺	12.4 Ppt	叠	age Be	ž	致
		E												
STTE: POINT: LAB ID 0: GC/MS DATE: MATIRX:		<u>.</u>	. 44.	•		L		.		•		L		la-
	SWM 403	227 1096	Pacor										1234789 HPCDF	

(1 #PC)

		12098	3044B-11	8-20-87	**		0.022	80t. 0.022 ppt	0.075			801 0.18 pot					1.5			3.1 ppt
	an Results	86021	30648-13	8-50-87	ī			6.069			0.13			0.3		ě				662 ppt
Table 5-18 (Cont'd)	Groundwater Round 1 Dibenzofuran Results	86021 g-24 hito)	30648-13	8-50-8	\$		0.099	0.15		6.3	0.42		8.5	0.65						892 ppt
Table	Groundwater Rou	86021 8-2	30648-2RX	8-25-87	PRODUCT										10.2 ppt	••				17100 ppt
		SITE:	1.48 10 E:	GC/NS DATE:	MATIRE	MANE	1004	TCDF	PINCUE	PACOF	PIACOF	HICOF	H_CDF	HYDDE	HICDE	HYCOF	HPCOF	HPCOF.	HOCOF	900pF
						8		2378		12378	23478	_	123478	123678	123789 1	234678	_	234678	231789	

in this well. Well NW-2-81 was also the only well in which the tetrafuran group was identified, at a concentration of 0.11 ppt.

Figure 5-17 depicts the total dibenzofuran results. Eliminating the results of HAV-02, the total dibenzofurans were highest at well R-2. The results of well HAV-02 were ignored because it is believed that the sampling method introduced oil into the sample. Like the previously mentioned total dioxin concentrations, well NW-2-81 also contained a relatively high value for total dibenzofurans.

5.3.5.2 Sampling Round #2

5.3.5.2.1 <u>Metals</u> - Groundwater samples from 10 selected existing and 18 newly installed monitoring wells were analyzed for dissolved metals. The results of this analysis, shown on Table 5-19, indicate that groundwater contains relatively high dissolved concentrations of calcium, sodium, magnesium, iron, manganese, and potassium. Lower concentrations of arsenic, cadmium, chromium, copper, lead, and zinc were also found.

The most frequently identified dissolved metal of interest was zinc, with reported values ranging from 8.1 ug/l (CW-1S) to 253 ug/l (R-2). Chromium was reported in two wells, NW-3-81 and HAV-02, at concentrations of 124 ug/l and 6.3 ug/l respectively. Cadmium was found in two wells, CW-3I and CW-6I, at a level of 5.6 ug/l in each well. Copper was not found above the detection limits. Arsenic was identified in nine monitoring wells, ranging in concentration from 2.2 ug/l to 23 ug/l. Lead was present in three wells, CW-5I, CW-5D, and HAV-05, at concentrations of 5.7, 8.5 and 3.3 ug/l respectively. Other dissolved metals were also

r.e. wright as Joiates, inc.

Table 5-19

1

Ground Water Round 2 Metals Results

	Ì	1000	1000		70	2						
	SAMPLE	0-1-X3	CH-1-12		CH-1-5	CH-2-D	C=-5	900-0-2-BC	CH-2-1		178451 CH-2-5	
	31.50	03/14/80 GADIAN I	03/14/88 GADMAT	•	03/14/68 GMDMAT	03/14/88 GMMAT	60	V14/BG CLIMAAT	03/11/M		03/14/88 CM0441	-
CHPB												
	METALS LAB 1. D. #	1851.78	185195		185190	185199		165200	165191		185135	
			**			## ## ## ## ## ## ##					#	
INDIFFE ANTINOMY			藍	S3 UG/L		3				R	8	23 EG/1
			至	1.5 06/1		富				:2	<u>-</u>	5 UGAL
	F		9.1	() p 86/1	_	\$				Ē	蓋	1 06/1
			8	2 W6/L		\$				~	幺	5 116/1
			줎	S UG/1		<u>.</u>				~	蠹	5 UG/L
			8	7/90 8 2		盏				R	26	790 Q
107 M LEAD			3	2.5 临几		906				2.5	80E 2.	2/98 5
108 H MERCURY			藍	0.2 UG/L		Z				0.2	<u>9</u>	2 UG/L
109 M MICKEL			3	39 06/1		8				85	100	12 DE/L
TIO N SELENTIN			B 04	1.3 06/L		8					2.5 ()6	#IIE/I
III M SILVER			8	B 116/1		魯				-	æ æ	# UG/1
112 # TIME CIM			2	2.2 UG/L		98				2.5	BOL 2.	2 UG/L
113 N 21MC			91	()P UGAL		83				۵.	u	P UG/L
114 # BARTON			\$	[]P UG/L	_	78				å	\$, EUG/L
115 M 1ROM			00819	1/90 d	_	<u>0</u> 60				_	Ξ	P 56/1
	ų		14700	P 166/L		0986				a.	7550	P 16/L
117 M WANKADIUM			10	3.06/L	BOX 3 UG/L	鞷	3 06/1	BOL 3 US/L		3 06/L	4.7 []	[]P 86,7
			8	43 UG/L		3				å	= 8+	P UG/L
			171	P 16/L	_	£13				_	210	P U6/1
	£		25400	P 06/1	_	17200				•	12500 P	E 166/1
129 II Calcium			81600	1/90 4	_	43900				о.	33500 P	E 116/1
130 M Sodius			57900	P 46/L		20100				<u>-</u>	13300 P	E 116/1
121 M Potassiun	•	4620 []P UG/L	0919	P 66/1	4120 []P UG/L	<u> </u>				200	== SE ■=================================	P 116/L
l F												
?												
3												
0												
0				-					-			
2												
6					-							
6												

r.e. wright associates, inc.

ont (@)	
5-19 (Col	
Table	

Ground Water Round 2 Metals Results

		13 UG/L	F 156/A	1/50 [S U6/L	5 UG/L	10 UG/1	N 66/L	.2 UG/L	1/90 64	3 106/1	8 15/L	2 UG/L	1/90 d	P (56/1.	P 06/L	P 15/L	1/90 d	3 W6/L	P 86/L	P 156/L	P 66/L	E USAL	./90 d
86021 CW-5-D 33/08/88 GMDMAT	184009																							
		53 06/1)F UG/L	1 66/1	S US/L	2 UE/1	20 US/L	.5 86/1	.2 USA	39 怎/L	.s tien	8 US/L	.2 JEA	12 處孔]P U6∕L	JP UG /L	ア第7	3 06/1	43 IEA	JP UGA	P 66/L	P 86/1	£ (\$6/1	JP (16/1
84021 CH-4-5 03/08/88 GHOMAT	183999																							
		730 ES	()F 66/1.	1 06/1	7岁 \$	S 116/L	20 VG/L	2.5 UGAL	0.2 US/L	39 UG/L	6.5 UGA	1/58 86.	2.2 UG/L	()P 46/L	[]P 06/L	P UG/L	P 06/1	3 16/1	790 C)	[]P UG/L	で配え	799 d	P E UG/L	P 186/1
86021 CW-4-I 03/08/88 GHOWAT	184001																							
		53 US/L	F S 116/L	1.06/1.	S U6/L	2 UG/L	20 NG/L	2.5 86/L	0.2 UG/L	39 UE/L	6.5 UG/L	8 US/L	2.2 US/L	P 165/L	[]P UG/L	P 86/1	P 16/L	[]P 46/L	43 IE/L	P 86/L	P 16/L	P 16/i	P E UGAL	[]P U6/L
86021 CW-4-D 03/09/68 GNDMAT	184008	蓋	æ	鼋	8 6	줎	æ	蓋	震	幺	幺	E	霊	=	=	1700	0601	(')	룚	19	16900	23000	33300	4790
		53 UG/L	1,5 UG/L	7 98/1	₹ \$	S 116/1	· 20 USA	2.5 UG/L	0.2 UG/L	39 US/L	1.3 UG/L	7/90 B	2.2 UGAL	P 06/L	[]P EUG/L	P 96/1	P 86/	1)P UG/L	T/90 EH	₽ U6/L	P E UGA	P E UG/L	P E UGA	(]P UG/L
86021 CW-3-5 03/09/88	184225	盘	震	章	叠	줎	æ	쯢	쯢	图	8	8	줊	æ	20	14900	280	3.6	줊	*	1800	31800	33100	1940
		23 06/1	1.5 86/1	1 66/1	P 16/L	2 BEA	20 USAL	2.5 46/L	0.2 JE/L	39 UG/J	1.3 06/1	8 US/L	2.2 UG/L	P 05/L	()P EUG/L	P 06/1	1/90 d	()P UG/1.	1/90 Et	1/501 d	P E US/L	P E UG/L	P & UG/L	()P UG/L
86021 CN-3-1 Q3/09/88 GNDUAF	184226	番	줊	蓋	5.6	S	ĕ	藍	룚	룚	룚	藍	至	33	137	12700	13600	•	룚	n	12900	35000	38000	4800
		S3 UG/L	1.5 06/L	1 66/1	S 116/L	S 86/L	20 46/4	2.5 UG/L	C 115/1	P 46/L	[]F MUG/L	# UE/L	2.2 UG/L	P 156/L	()p eugy	P 06/L	P 06/1	[]P 16/L	13 UG/L	1)4 (16/1	P E U6/L	P E 86/L	P E UG/L	P UG/1.
86021 CH-3-D 03/09/88 GNDHAT	184224	藍	줊	富	8	8 6	8	줊	0.39	•	œ	8	藍	35	23	390	9370	£.4	鼍	=	1860	36300	30808	01/9
SITE SAMPLE DATE NATREX	MCIALS LAB 1. D. #																							
		AND LINGAY	ARSENIC	BERYLL 1UM	CADINICAL	CHRONIUM	COPPER	LEAD	TERCURY	MICKEL	SELENTUM	SILVER	THALLIUM	2116	BARTUM	IRON	MANGANESE	VANADIUM		C08AL1	MENESTIM	Calcium	Sodius	Potassium
Q.		=	_	=	104 M	_	==	=	_	=	=		=	=	=	*	=	=	=	=	=	=	•	=

r.e. wright as clates, inc.

Table 5-19 (Cont'd) Ground Water Round 2 Metals Results

SITE SANCLE DATE MATRIX	METALS LAB 1. D. 8 ***********************************
86021 CN-5-1 03/08/88 GNDM I	11000 11000
- 5 6	53 06/1 1 16/1 1 16/1 2 16/1 3 16/1 3 16/1 3 16/1 1 16/
64021 CH-5-5 03/09/08 64044?	14 F S 96.7 16 F S 96.7 17 F S 96.7 180
8-6-21 CM-4-0 03-09-7-88 GROMA?	194.23 112.12 1901 S0 16/1 1001 1 16/1 1001 S 16/1 100
84021 CH-6-1 03/10/68	184702 1801 53 0674 175
84021 CH-4-S 03/10/10	104703 11164703
84021 HAV-2 03/07/89 GNDMA?	19427 3.1 [JF 167.] 90. S3 96.7 3.1 [JF 167.] 90. 1 96.7 80. 2.3 96.7 80. 2.3 96.7 80. 2.3 96.7 80. 2.3 96.7 80. 2.2 96.7 80. 2.2 96.7 80. 8 96.7 7.3 [JP 16.7 80. 8 96.7 7.3 96.7 80. 8 96.7 7.3 96.7 80. 8 9
86021 MAY - 5 03/09/88 GNOMA 7	184228 115.67. 116.15.167. 117.167. 117.00. 11

r.e. wright associates, inc.

Table 5-19 (Cont'd)

Ground Water Round 2 Metals Results

		-				_	_									-			-	_			
		N90 ES	795 + -	. S	5 富人	790 OE	2.5 86/1	0.2 UGA	39 62/1	1.3 UGA	79 B	2.2 UG/1	P USA	150 G/I	V90 d	P 196/	3 66/1	13 記入	7 99 d	P 16/1	P 55/	P 06/L	Ile us.
86021 M4-6-81 03/15/88	185391																						
		23 GG/L	1.5 g6/L	5 We/L	P U6/L	7/90 PZ	.S 66/L	.VM 166/L	39 ES/L	.3 UE/L	8 UE/J	2 UG/L	Je usa]P UG/L	P IE/L	P UG/L	3 46/1	P USA	7/90 d	P US/A	P 65/1	P 86/1	1/90 00
86021 NW-3-81 03/15/88 6MDWAT	185390	藍	로 <u>-</u>	- :	2	룗	7 80 7	0.22	룚	=	岳	26	2	ຂ	گ	9 2	爱	292	≘	28000	79800	18200	200
		53 06/1	1.5 US/L	5 We/L	S 06/L	20 UG/L	2.5 UG/L).2 UGA	39 UG/L	1.3 06/1	8 USA	2.2 USA	750 g]P 86/L]P 06/L	P U6/L	3 06/1	43 US/L	P US/L	P UGAL	P U6/L	P 16/L	100 116/1
64021 144-2-81 03/15/88 SHOWT	185389	200	- 5 &	i S	麗	줊	岳	æ	룙	麗	æ	蓋	3	23	28	8	쯢	æ	6.	10400	29600	3200	2 88
		1/90 ES	1.5 UG/2 1.5 UG/2	S 66/L	S (56/L	79 0E/L	2.5 UG/L	0.2 UG/L	39 WE/L	1,3 UG/L	8 86.7	2.2 UG/L	()P USA	JP EUG/1.	790 d	P 16/1	[]P UGA	13 16/1	[]P USA	P E US/L	P E UGAL	P E 116/L	11P 86/1
86021 M-1-81 DUP 03/10/88 GRDUAT	184705	68	E	S	蠹	藍	룚	8	叠	8	ක්	藍	=	- SS	₽ 6	1430	3.2	\$	33	9540	30300	24200	2800
•		S3 06/1	八名 5.1	5 UGA	S 46/L	29 NE/L	2.5 86/1	0.2 UG/L	39 NG/L	1.3 UG/L	8 VG/L	2.2 (16/1	()P (56/L	JP EUGAL	798 d	P U6/L	()P US/	1/90 64	[]P 86.A	P E 16/L	P E 66/L	P E UG/L	13P 11G/1
86021 N4-1-81 03/10/88 GROWAT	194704	震	15 15	i ਛ	뙲	8	10	.	108	曼	쫉	8	=	22	ş	1510	3.3	ē	33	0696	3148	24300	2830
		S3 UG/L	1.5 66/1	5 16/L	5 UG/L	20 UG/L	2.5 JE/L	0.2 US/L	39 W6/L	1.3 46/1	8 W5/L	2.2 US/L	P 86/L	()P UG/L	P 06/1	P U6/1	3 06/1	43 US/L	5 UG/L	P 06/L	P 66/L	7/9A 3 d	112 113/1
86021 HAV-8 03/08/68 GWDWAT	184012	震	1	i E	Ξ	90	쯢	色	Ē	<u>8</u>	줊	盘	%	25	≡	8	æ	8	藍	9008	41200	28	31.20
		S3 W6/L	1.5 06/L	. 5 16/L	S U6.7.	790 02	2.5 UG/L	0.2 UG/L	39 UGAL	1.3 USA	790 B	2.2 66几	[]P 46/L	[]P 156/L	P 456/L	P 156/L	[]P UG/L	43 UGA	5 VG/L	P 06/L	P 06/L	P E UGAL	179 116/1
84021 HAV-7 03/08/88 GMOWA I	184010	100	E	i z	E	至	줊	喜	108	富	8 0	ă	=	115	15400	1590	1	6	80	21200	23300	23700	3700
SINE SAMPLE OATE MAIRIX	METALS LAB 1. D. 1																						
		ANT INDAT	ARSENIC Dedyll 3100	CACATURE CAT	CHROMIUM	COPPER	LEAD	HERCURY	NICKEL	SELENIUM	SILVER	HAL ION	21110	BARTON	IRON	HANGANESE	VANADIUN	A CHINE	COBAL 7	MAGNESTUM	Calcium	Sedius	Potassium
		= :	==	3 8	==	=	#	=	E	=	×	£		£	E	*	*	≖,	=	•	=	=	=

r.e. wright as Colates, inc.

	Results
Cont'd)	Metals
=	7
5-19	Round
Table	Water
	Ground

84021 84021 R-2 R-4 03/16/80 03/16/80 GNOMAT GNOMAT	185699 185700	53 UG/L BOL	F IIG/L	1,66/1	S UG/L 80L	\$ 66/1 800.	20 116/1 BOL	2.5 UG/L BOL	0.2 US/L BOL	39 UG/L BOL	1.3 UG/L 1.3	9 UG/L BOX	2,2 16/L 800.	P 06/L 15	()P US/L 130	P 16/L 25	P 106/L	3 66/1 200	13 16/1 800	P 86/L 80K	P US/1 11900	P UG/L 13900	P U6/L 10200
SITE SAMPLE PATE MATRIX	METALS LAB 1, D. 4																						
		ANTUMORY	APSENIC	DERTIL 1UM	CADHIUM	CHROMIUM	COPPER	LEAD	MERCURY	MICKEL	SELENTUM	SILVER	THALLOW	ZIEC	BAR IN	IROM	PARISAMESE	VANADIUM	在第一部	COBALI	MASNES ! UR	Calcium	Sadina
		-	*	=	=	=	=	=	=	*	=	*	æ	=	*	*	=	=	=	=	=	=	-

identified in the groundwater including barium, beryllium, mercury, and selenium.

Figure 5-18 depicts the distribution of total selected metals in the groundwater. Arsenic, cadmium, chromium, copper, lead, and zinc were selected as the metals of concern based upon their health risks and/or their association with NWP operations. From the data presented, it does not appear that any correlation exists between monitoring wells with oil in them, such as R-2 and HAV-02, and elevated concentrations of dissolved metals, when compared to wells containing no oil.

5.3.5.2.2 <u>Volatile Organic Aromatics</u> - Groundwater samples were obtained from 10 selected existing monitoring wells and the 18 newly installed monitoring wells for VOA analysis. The VOAs identified in the groundwater, as shown in Table 5-20, are consistent with those usually associated with solvent and gasoline/fuel oil contamination. The primary chemicals found in the groundwater sampling include benzene, ethylbenzene, trichloroethene, vinyl chloride, total xylenes, and 1,2-dichloroethene (total). Lower concentrations of 1,2-dichloroethane, methylene chloride, toluene, 1,1,2-trichloroethane, acetone, and 1,1-dichloroethene were also found.

A total VOA map was produced by summing the VOA results of each sampling point. Figure 5-19 depicts the results. Upon reviewing the map, an increasing VOA concentration with depth trend is apparent at CW-1, CW-5, and CW-6 series wells. In addition, a decreasing VOA concentration with depth trend is present at the CW-2 series wells. The wells of the CW-3 series indicate that the saprolite units are significantly higher in VOA contamination than the bedrock, while the CW-4 series wells show and essentially

r.e. wright associates, inc.

Table 5-20

Ground Water Round 2 Volatile Organic Results

SAMPLE	86021 CH-1-D		86021 CH-1-1		86021 CH-1-5		B6021 CH-2-0		86021 CH-2-D-DUP		08021 CH-2-1		86021 CM-2-S	10
MATRIX	ENDHAT ENDHAT	-	CAIDIAN ES		ENEGANA ENEGANA		03/14/88 CMDMA		03/14/88 SMDMAT		03/14/88 GND4A1		8/11/CO	
VOC LAB 1.0. #	185187		185183		185144		185188		185169		185149		185133	•
	## ## ## ## ##				11		## ## ## ## ##		## ## ## ## ##	,	11 11 11 11		11	
	80	1/6 9) mg/l	줊	2 mg/l	~	764	~	1/60 1	8	1/6n S	룖	S Mg/
	£	1/60		S ug/1	출	S ug/]	蓋	2 mg/	蓋	/bn <		5 ug/l	臺	2 80
	Ş	1/6n		5 ug/l	줊	2 mg/	蓋	S ug/1	藍	S 89/1	爱	2 2 3	흜	S
	ĸ	1/68		5 ug/l	룜	5 mg/1	룚	5 ug/]	륦	S uq/	E	S 44/	æ	200
	ಜ	Eg/1		5 ug/l	8	1/6m S	룖	1/6m S	\$	/gs s	\$	5 mg/l	\$	2 ma/
	S	ng/l		10 ug/1	줊	10 ug/1	8	10 ag/	줊	10 mg/1	畜	10 mg/	蠹	Dn 01
	S	ng/l		1/6n S	藍	S ug/l	蓋	5 49/	鼋	5 ug/1	2	S ug/	æ	5 44
	ĸ	ng/J		S ug/l	章	5 ug/l	줊	2 mg/l	鼋	7 mg/	E	5 wa/1		Sug
	22	mg/1		5 uq/l	\$	2 no/	8	/on s	2	- /em 5	\$	S ma/	2	. *C
	22	1/bn		5 Mg/1	Ē	5 40/	2	2 MO/	差	2 #0/	æ	/en s	蓋	
	_	/bn) mg/	æ	2 mg/	æ	/on 5	趸	- /g2 - 5	8	/es <	2	200
	ĸ	mq/1		2 40/	훒	S #0/	ā	2 100/	E	/en s	2	2 Ma/)	8	5
	\$2	1/00		5 ug/1	æ	/on 5	Z	S 20/1	2		2	S Mg/	臺	9
	23	1/60		5 mg/l	~] 66/	-	/01	_	700	22	/ea	2	/6
	S	1/6n		10 mg/l	蓋	10 ug/1	룚	10 ug/1	鼋	76m 01	E	10 ug/l	蓋	5n OI
	8	ng/l		10 mg/l	爱	10 ug/l	룔	10 mg/]	蓋	10 mg/	룗	10 ug/l	줖	5
	2	i/ōa	-	[/6n ca	爱	/bn <	~	[/ån C8	m	8J Mg/1	æ	S 159/	蓋	SEG
.1.2.2-Tetrachloroethane	23	[6]		5 mg/	줖	2 mg/]	蓋	S 119/	藍	S 44/	蓋	5 mg/]	嚴	
	BOL 25	1/61	至	S uq/i	蓋	2 wg/	3	5 mg/	Ξ	5 440/1	\$	5 89/	Ē	S MQ/
	\$2	[/6n	-	5 ug/l	표	5 ttg/	_) md/l	~	1 44/1	~	/g	· S	2
	ಜ	1/60	-	5 ug/1	藍	5 119/1	E	1/6n S	E	1/6m S	E	5 119/1	E	200
	ĸ	1/60) ug/]	훒	5 ug/1	蓋	1/6m S	幺	S ug/	8	S mg/l	쿒	S #9
		m g/]		D ug/l	*	[/6n	=	1/6n	•	[/6#	-) ug/1		CH C
	_	1/6 a		/g	~	7 m/	æ	10 09/1	3	7/64 Q	æ	10 mg/}	ã	5n Q1
irans-1,3-Dichloropropene	೫	ng/]		5 ug/l	줊	5 ug/l	줊	2 mg/	줖	76n S	臺	5 Hg/]	蓋	SEG
	S	1/6n		S ug/l	줊	1/6n s	至	2 mg/l	ਛ	5 wg/1	墓	S 49/1	줊	S 45
	2	1/68		J ug/l	œ] Mg/	21	[/6# B	1	BJ 69/]	7	3 49/	2	/6m
	S	1/6n		10 mg/l	盏	10 ug/1	æ	10 mg/1	爱	10 mg/	爱	10 49/	룙	10 ug/
	23	ng/l	죭	5 ug/l	둞	5 ug/l	륦	S #9/1	番	5 mg/	藍	5 Mg/1	8	5 #9
	S	1/61	륟.	1/gn 01	麗	10 mg/	幺	1/6m e1	蓋	10 mg/	氢	1/6n 01	줊	/6m 01
	3	mg/]	藍	lø ng/l	<u>e</u>	1/6m 01	줖	10 mg/1		10 wg/1	震	10 ad/1	藍	10 ug/
	SS 788	1/60	æ	1/6m 01	蓋	10 49/	룚	10 ug/l	霯	10 eg/1	爱	10 ug/]	叠	/6n OI
		/6n	텶	10 mg/l	훒	10 mg/1	7	[/6n	3	1/6#	<u>=</u>	/ba	2	/6n
.2-Dichloroethene(Intal)	130	74	Ş	7	:		٠							

r.e. wright as Joiates, inc.

Table 5-20 (Cont'd)

Ground Water Round 2 Volatile Organic Results

84021 CH-S-D 03/06/48 GHOMM I	-c						BOL 50 49/1																												
_			5 # 9∕1	5 49/1	5 49/1	S #9/1	10 ug/	2 16/1	5 49/1	1/6n S	/6n	2 mg/l	5 ¥9/Ì	5 ug/i	5 49/1	10 49/1	10 ag/1	5 wg/l	5 ug/1	5 wg/!	5 #9/1	5 ug/]	5 ug/1	- F	- S	1 (A) 1	5 mg/1	1/52 7 2	1/6# 01	2 Mg/	769 O	10 ag/1	10 eg/l	1/6# (£67)
244531 144006 144006 15440 15460 15400 154																											5 cg/1				1/5 ₄	_		[/6x	
86021 CB-4-1 03/06/88 GMD4AT							BOL 10 kg/]																							S S	<u> </u>	28	20E	9	\$
7-0 7-0 1-0 1-0 1-0 1-0	• !!	/m ,	t 5 mg/l				L 10 kg/l																							Š	2	호	2	_	1/671
149000 14-00/50 1-1-183 1-1-183	z ii						10 kg/l 800.																												7 1/60
84021 03/04/88 03/04/88	17101						. 10 C																												800
Z785 _		_	≘	쥰	Ξ	≘	ž	≘	≘	Ē	Ξ.			Ξ		ĸ	2	=	=	=		2	=	2	ĸ	=	13 mg/l	X	£	<u>=</u>	ĸ	23	23	<u>.</u>	
84021 CW-3-1 03/09/66 CMD461	124111				-																											-			9/1 804
64021 (W-3-9 63/69/88 GMOMAT																																			BDL 5 ug/l
A THE WELDON ATTACKS BLUS BLUS			-	Jarben Tetrachloride	nite of	Dibrosochiorosethane	- Lance		Propodich loronet hane	,1-Dichlaroethane	,2-Dichloroethane	.1-Dichloroethene	,2-Dichloropropane	cis-1,3-0ichloropropene	zene	Kane	thane	ethylene Chloride	.1.2.2-Tetrachloroethane	etrachloreethere		.1.i-trichloroethane	1,2-frichloroethane	pethene	loride	irans-1,3-Dichloropropene			يهو	Carbon Dissilfide	2	t-Met hy 1-2-pent anone	etate	(Tatal)	1,2-Dichloroethene (Total)
9	•	203 V Pentene	<u>-</u>	3	207 V Chlorobenzene	>	_ >	_		_	215 W 1,2-Dich	_	_	218 V cis-1,3-	219 V Ethylbenrene	220 V Brosomethane	-	>	_		_	· -	228 V 1,1,2-fr	_ >	Les viny chloride	_ >	⇒.	A Acetone		_		_	_		299 W 1,2-Dich

Table 5-20 (Cont'd)

Ground Water Round 2 Volatile Organic Results

				3	1> 044354	our Arman	sarns:						
	3118	86021	86021	8	120	86021		86021		14021		PK021	
	3)445		CM-5-5	3	Q-9	J-9-#3		5-9-90		C-040		2.040	
	3 PAG	03/08/80	03/06/89	63/03		03/10/60		00/01/00		7. AWA	٠	6-YAR	
ş	MIRIX	SWDMA 1	SWORM1	SHDHAT	1	CADILAT		ENDAN!		CEDIA		CMD#AT	
3	# 4 3 GV 3 JUNI	103001	183984	16781	,	194497		907781		164221		184222	
				4 11 11 11 11 11 11 11 11 11 11 11 11 11	. 11							317.5	
703 W	Brayes	250 D uq/1	#3 0 ts	9/1	2 B ug/l	7	1/60	_) ug/		1/60	130	1/60
202	Brownia	=	2	16 JA		퓶	5 ug/l		5 ug/1		2 mg/	É	1/6m 9
206 €	Carbon Tetrachloride	=	2			8	5 ug/1		5 ug/l		S 49/1	묦	6 ug/]
207 V	Chlorobentene	2	2	_		룶	5 ug/l		5 ug/l		2 ug/l	906	1/6n 9
208 €	Dibrosochlorosethane		=			쯢	1/6n S		S 199/1		S ug/1	펉	6 ug/1
209 U	Chloroethane	ĸ	2	_	_	룶	10 ug/l		10 ug/l		10 ug/l	룗	1/6m EI
211 V	Chloroform		90K 10 u	ug/1 00		蓋	5 ug/l		S wg/1		5 ug/1	룶	6 ug/l
212 0	Brogodichlorogethane	2	2	_		8	5 ug/1		5 ug/l		1/6n S	종	1/6n 9
214 V	1.1-Dichloroethane	=	=	ug/l 80		룶	5 ug/1		S ug/1		5 ug/1	쯢	6 trg/l
215 W	1.2-Dichloroethane	0	0	_		盏	5 49/1		5 mg/l		5 ug/l	•) ug/l
216 9	1.1-Dichloroethere	<u> </u>	2			8	5 ug/1		5 ug/l		S 49/	叠	6 ug/l
217 V	1.2-Dichloropropane	2	2			爱	5 ug/]		S ug/l		S ug/l	爱	1/6m 9
218 U	cie-t.3-Dichlororopene	~	2			æ	5 ug/l		5 ug/l		5 ug/l	藍	6 ug/l
219 4	Ethylbenzene	2	2	ug/l		蓋	5 ug/l		5 ug/1		1/6n	9	1/6n
226 ♥	Brownethane	22	2		_	8	10 tg/l		1/6m 01		10 ug/l	2	13 ug/l
321	Chloromethane		2			8	10 ug/l		10 ug/1		10 mg/1	æ	13 ug/l
222 ₩	Hethylene Chloride	2	2			줊	5 ug/1		J 49/]		1 J ug/1	E	6 1 19/1
223 V	1,1,2,2-Tetrachloroethane	=	BOL 10 #	#g/1 80L	L \$ 19/1	æ	S #9/	룗	5 ug/l	藍	5 49/1	爱	f 469/]
724 V	Tetrachloroethene	=	2			ā	S ug/l		5 ug/l		7 mg/∫	쿒	/6a †
225 V	Toluene	ā	0			E	S ug/Ì	줊	2 mg/j		1/60	<u>\$</u>	[/6n
ħ (22	1,1,1-Trichloroethane	≃	2			叠	5 49/1	藍	5 uq/1		5 ug/1	鼋	/6n 9
228 V	1,1,2-frichloroethane		2			뤁	5 ug/l	Ē	5 ug/l		/bn s	룙	/6n 9
A 622	Trichioroethene	_	_			8	769	J.	L/6n		/6n	•	/ga (
Æ	Vinyl Chloride	ž	೭			줊	1/6a OI	ب) ug/		76 ed	E	13 49/1
B	Trans-1,3-Dichloropropene		=				S ug/1	蓋	S 49/1		5 ug/l	台	/6m 9
r P	Styrene	2	BOL 10 u	1/6n	S.	E	2 mg/	E	5 t/g/		/611 S	륦 :	/6a 9
25	Acetone		≈				10 mg/1		10 eg/1		# <u>@</u> /	2	1/6n #
Ē	2-Butanone		2		2	玄	1/6h 01	룚	16 4g/1	Æ	1/6n 01	Ē,	13 eg/
2 1 €	Carbon Disulfide		2		S	E	5 mg/l	鼋	2 ug/1	藍	5 49/1	爱	- Fig.
200	2-Heranone	ž	8		2	囊	10 409/1	훒	. [/ôn ol	줖	10 v g/l	臺	13 mg/l
2.97	4-Hethyl-2-pentanone	2	2		X 10 ug/l	룚	10 ug/1	Ē	10 trg/1	줊	10 ug/l	줊	13 mg/l
Ē	_	\$	2	_	오	1	10 ug/l	Z	10 mg/l	蓋	10 eg/1	E	13 mg/l
- €	_	9	0		_	æ	l/ba	Ē	5 mg/]	2	/6n	210	E 49/1
299 €	1,2-Dichlorwethene(Total)	0		1/6	1/6m Si	æ	- - - -	1	/ôa	•	[/6#	••	3 eg/l
				,									

r.e. wrightassociates, inc.

r.e. wright as Joiates, inc.

Table 5-20 (Cont'd)
Ground Water Round 2 Volatile Organic Results

Table 5-20 (Cont'd)

Ground Water Round 2 Volatile Organic Results

66021	K-4	I-MONS		183070	BOI 5 110/1	· •	BOL 5 ug/1	٠,	BOL 5 ug/l	_	BOL 5 ug/1	<u>.</u>	د		S	~	1/6n S ng/1	ç			2 B 3 ug/l	BOC 5 ug/1	80L 5 ug/1	[/6n f	80t. 5 ug/l		: حه	2	· .	: د	=	=	٠.	으	2	<u>e</u> '	, دۍ	PDF 2 PG/1
					1/04/	5 49/1	5 ug/1	5 ug/1	S ug/	10 ug/1	1/6m S	5 ug/1	2 mg/l	S eg/l	S ug/1	5 mg/l	S 49/1	l/bn	10 mg/l	10 ug/l	#3 mg/j	S 14g/	5 ug/]	1/60	. I/6# S	\$ ug/1	[/bn	Mg/	2 ug/					1/6m 01		10 ug/l	/6 m	1/69
12098	7-X 7-X	SHOW!	100300	16367/	7	90	BOK	E	Z	BO F	8	6 0	308	E	E		憂	*	盈	종	-	8	2	<i>(</i>)	10B	, 188	.			感 :	2	E	1	E	•	108	240	E Z
3118	SATATE SATATE	MATRIX		W. LAB I.C. P	C Densemb	- >	-	-	-	-	V Chloroform	V Bromodichloromethane	-	>	-	_	-	>) V Bromomethane	>	_	3 V 1,1,2,2-Tetrachloroethane	4 V Tetrachloroethene	<u>-</u>	_	>	>	- :	> :	> :	>	>	- -	 >-	=	- :	- -	f W 1,2-Dichioroethenellotal)
			훒		Ę	ă	ş	2	2	8	Ξ	212	214	23	216	217	218	219	23	≅	zz	223	22	S	\approx	28	2	₹ 3	2	2	222	23	2	255	25	23	Æ.	747

r.e. wright associates, inc.

uniform, moderately high VOA contamination throughout the unconsolidated and bedrock aquifers. It is believed that the vertical gradients found at these wells may influence the distribution of contaminants; however, further sampling and water level measurements would be necessary to substantiate this.

There does not appear to be any correlation between the presence of oil in a well and elevated VOA levels, as no trace of oil has been found in wells CW-1I and D; CW-3S and I; CW-4S, I, and D; CW-5S, I, and D; or HAV-05, which have substantially elevated VOA levels. Therefore, sources of VOAs other than the immiscible oil layer are believed to cause increased VOA concentrations in some of the wells. For example, the CW-1 series wells west of NWP are believed to be upgradient of the site, yet their total VOA levels are among the highest measured during this sampling round. Accordingly, it is reasonable that some (unknown) portion of the VOA contamination shown in these wells may be attributed to sources located further upgradient. Based upon the VOA distribution in groundwater around the CW-3 and CW-5 wells, it appears that these are near a source for VOAs.

The elevated levels of VOAs at wells HAV-05, CW-1, CW-3, and CW-5 series also suggest that the dissolved VOA contamination in the groundwater extends beyond the present monitoring well network.

5.3.5.2.3 <u>Base Neutral/Acid Extractables</u> - Groundwater samples were obtained for base neutral and acid extractable (BNA) analysis from 10 selected existing and 18 newly installed

monitoring wells. As shown on Table 5-21, relatively few BNA compounds were found in the groundwater samples. The chemicals found in the highest concentrations and with the most regularity were pentachlorophenol (PCP), naphthalene, 2-methylnaphthalene, and phenanthrene, with lower amounts of approximately 15 other BNA compounds.

To assess the distribution of BNAs in groundwater, a total BNA map, Figure 5-20, was produced by summing the concentrations of BNA species above the detection limits for each sampling location. As shown by the map, the groundwater at the site contains substantial quantities of BNA compounds. At monitoring well series CW-1, the concentration of BNAs appears to decrease with depth, as does series CW-2. However, on the PCG property, monitoring well series CW-3, 5, and 6 exhibit the reverse trend where total BNA concentration increases with depth. The presence of elevated concentrations of total BNAs at monitoring wells HAV-05, HAV-08, and series CW-6 indicates that BNA contaminants extend beyond the present monitoring well network. Figure 5-20 also shows that the groundwater in the bedrock is almost as contaminated with dissolved BNAs as the groundwater in the saprolite units.

The most frequently occurring BNA species was PCP, which ranged in concentration from below the detection limit to 4100 ug/l during this sampling round. A complete discussion on the presence of PCP in the groundwater and its relationship to the groundwater plume is discussed further in Section 5.3.6.2.

5.3.5.2.4 <u>Pesticides/PCBs</u> - Groundwater from the 10 selected existing and 18 newly installed monitoring wells was analyzed for pesticides and polychlorinated property [PCBs].

r.e. wright associates, inc.

Table 5-21

Ground Water Round 2 Base Neutral/Acid Extractable Results

86021 CM-2-5 03/14/88 GNDUAT	185133	9 3 40/]	2	_	8	2	8	8	೭	2	2	2	R	R	2	8	2	2	2	R	2	2	\$	尺	8	R	BDL 20 49/1	2	R
84021 CH-2-! CH-2-!	182149	/gii @/	20 49/1	20 49/1	20 ug/1	20 ug/l	20 mg/1	20 ug/i	7/€n &	20 ug/]	20 ug/1	20 ug/1	20 ug/l	20 kg/l	20 49/I	7/6m 02	20 mg/l	20 ug/l	70 mg/J	76n 62	20 Bg/1	(/6n ez	. €0 ug/]	20 ug/l	20 ug/l	78 mg/l	70 mg/l	% ng∕]	20 mg/j
86021 03/14/88 6MDM71	182169	20 tra/1	20 ug/l	20 ug/l	70 mg/l	20 ug/1	20 ug/l	20 ug/l	76 0 €	20 ng/J	20 mg/l	20 ug/l	20 mg/1	20 ug/]	20 ug/l	7/6n QZ	70 mg/	20 ug/l	20 ug/1	20 mg/l	20 mg/l	20 ng/]	1/6n 0 ∂	20 ng/l	20 ug/l	2) rā/J	BOL 20 ug/1	76n 02	Z0 #9/]
84021 CH-2-D 03/14/89 GNOMAT	185100	2	2	8	2	2	2	2	2	2	2	8	2	೩	R	R	R	2	2	2	2	2	\$	8	2	2	90C 20 ag/1	2	R
86021 CN-1-5 03/14/88 GNOWNT	185144	8	ຂ	2	2	8	2	2	2	8	R	2	R	2	2	2	R	2	2	8	ຂ	R	\$	2	2	2	BDL 20 ug/1	2	R
86021 CW-1-1 G3/14/98 GHOWAT	105183	8	8	2	೩	8	2	2	R	2	2	8	2	2	R	2	R	≳	2	2	2	೭	\$	8	2	2	80t. 20 ug/l	2	R
86021 CH-1-D G3/14/88 GNOUAT	185187	2		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	\$	೩	2	2	BOL 20 ug/l	•	2
SITE SAMPLE BATE MATRIX	ACID EXTRACT./ BASE N	Acetably were	Acenaphthylene	Anthracene	Benzo(a) Anthracene	Benzol a Pyrene	Benzo(b)/Fluoranthene	Benzo(g,h,i)Perylene	Benzo(h)F luorant hene	bis(-2-Chloroethory)Methane	bis(-2-Chloroethy!)Ether	bis(2-chloroisopropyl)Ether	bis(2-Ethylhery)Phthalate	4-Brosophenyl-phenylether	Buty ibenzy ipht halate	2-Chloronaphthalene	4-Chlorophenyl-phenylether	Chrysene	Dibent(a,b)Anthracene	1,2-Dichlorobenrene	1,3-Dichlorobenzene	1,4-Dichlorobenrene	3,3'-Dichlorobenzidine	Diethylphthalate	Disethy! Phthalate	Di-n-Bulylohthalate	2,4-Dinitratoluene	2,6-Dinitrotoluene	Di-s-Octyl Phthalate
2	-	60	402 B	403 B	402 B	4 06 8	₩	8	8	4 0 9	8 =	412 B	#3 B	8 717	415 B	416 8	417 8	418 8	4 9 8	2	421 B	422 B	4 23 B	424 B	425 B	€ 88	457 B	428 B	153

r.e. wright as Doiates, inc.

Table 5-21 (Cont'd)
Ground Water Round 2 Base Neutral/Acid Extractable Results

		_	_	_	_	 		===		_	_	_									_	. نس			·	<u></u> -		<u>۔</u> نے		·		٠ د خم				<u> </u>		_
64021 CM-2-5 03/14/#8	185133						No.																															
																												/61 001										
179,1758 1-2-10 1-2-10	105149																																					
		8	-	2	2	2	R	2	2		R	2	R	_	R	R	R	2	~		8	홏	훒	8	2	2	<u>8</u>	<u> </u>	₹	昱 :	2	0	೭	2	೭	2	2	2
8402 EM-2-0-DUR 63/14/PE	183	=	က	Ħ	ĕ	蓋	<u> </u>	蓋	Ē	%	룙	盏	ਛ	œ	2	룚	蓋	至	c	33	至	Ē	蓋	줖	爱	률 :	E	E	S	至:	E	SE E	줎	鼍	줊	墓	줄 :	ž
						1 2 2																						- /6# 001 001										
84621 CN-2-0 83/14/84 GRIDHAT	145 FEE	=	c	至	쫉	蓋	롩	줖	ಷ	14	룙	Z	æ	œ	2	줖	\$	氢	~	=	囊	幺	8	æ	æ	ਵ :	E	를 :	<u> </u>	ෂ් .	<u>e</u>	2	æ	줊	ਛ	ਛ	e ;	ž
= v # ←		_	_		_	_	_			-	_		_		_				_	_	_	_	_				_	76n 001		_	_	_	_		_	_	/6a @	-
64021 63/14/84 63/14/84	105144	蓋	ž	臺	줖	蠹	藍	臺	墓	叠	藍	富	훒	臺	룚	鞷	룦	줊	蓋	\$	Æ	륦	ਛ	룝	ਛ	<u>ස්</u> :	E	E :	E	륦	룚	<u>\$</u>	룚	童	줊	8	E	Ē
≈ ∵26 ≒																												/64 80 80									/ga 93 13	
04021 CH-1-1 03/14/80 GNDWAT	165/63	2	¥		\$	臺	Ē	氢	墓	. 2	2	룚	2	\$	훏	鞷	\$	蠹	Ē	2	3	蓋	8	爱	8	Æ :	₹.	2	E	줊	臺	æ	畲	출	盏	臺	\$	E
≂ ₽₽		20 mg/	 																									8 2 2										
84021 CW-1-D 63/14/89 SHOWN	105167	절	蓋	\$	蓋	蓋	ਛ	Š	爱	25	ž	鼋	€	臺	쫎	<u>s</u>	줊	靈	8	8	줎	蓋	æ	E	z	출	E	품 :	X	Ē	E	-6	<u>E</u>	8	ౙ	Ē	2	Ē
SAMPLE SAMPLE DATE	ACID EXTRACT./ BASE MENT. LAB 1.0.0			•	*	entadiene		Pyrene				ropy]anime	lawine(1)			entene				35					_		thytphenot				[pheno]		•	henol				heno]
	ACID EXTRACT./ B.	Fluoranthene	Fluorene	Herachlarobenzene	He sach lor obut adjene	Herachlorocyclopentadiese	Herachloroethane	Indeno(1,2,3-cd Pyrene	Isophorose	Rapht halene	Mitrobenzene	K-Mitrosa-Di-n-Propylanime	H-Mitrosodipheny lasine(1)	Phenanthreae	Pyrene	1,2,4-Trichlorobenzene	Benzyl Alcohol	4-Chloroaniline	Dibentofuran	2-Nethylnaphthalene	2-Witroamiline	3-Mitroaniline	4-Nitroamiline	2-Chlorophenol	2,4-Dichlorophenol	7,4-Dieethylphenol	604 A.L., 6-Dimitro-2-Helby (phenoi	65G. 24. Dinitropheno	10ft 2-Kittephenel	602 A 4-Nitrophenol	4-Chioro-3-Hethy	60% N. Pentachloropheno	Pheno!	2,4,6-Trichlorophenol	2-%ethylphenol	4-nethylphenol	Benzoic Acid	2,4,5-Trichlorophenol
5		131	135	E	-	55	436	437 8	# 86.7 ************************************	439 B	8 9 7	442 8	143	===	445 8	446 B	17.7	475	1 9/	477 8	478 8	479 8	8 2 2 4	₹	2	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	4	500	Ş	100	\$ \$) 5	SICO Phenol	2	₹ 029	622 A	625 A	₩ 929

r.e. wright associates, inc.

Table 5-21 (Cont'd)

Ground Water Round 2 Base Neutral/Acid Extractable Results

=0 = -	3 ug/1 20 ug/1	1/6n 82 20 n3/1	1/6n 02 1/6n 02 1/6n 02	28 88 7 1/61 8 8 18/1	7777	77777 6667 6678 6677 6678 6678 6678 667	20 69/1 20 69/1 20 69/1 20 69/1
86021 CW-5-C 03/08/86 GROWA1	7 66 8	基度最	5	ස් සි සි සි	E E E E E	5 5 5 5 5 5	EEEE
- V & -						20 ma/1 ma/2 ma/2 ma/2 ma/2 ma/2 ma/2 ma/2 ma/2	
86021 CH-4-5 03/09/88 SIDUAT 183982	# # # # #	E E E	EEE	2 2 2 2 2	EEEE	≦&&&&°}	新春春春
== ===	7 2 5	2888	222	2222	22222	20 63 71 75 63 63 71 75 63 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75 63 75	2222
8602 CW-4- 03/08/86 GNDWA1	# ~ E E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>e</u> e e	ස්ස් ස්	医医医医	EEEEEE EE	基金属金金
= - 2 =						2000 000 000 000 000 000 000 000 000 00	
86021 CH-4-C 03/08/86 GND4A1 183995	906	를 면 된 <u>등</u>		56	EEEE	医医医医医胃	E E E E E
= S & =	7 2 2	2222	222	2222	28888	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2222
86021 CH-3-5 63/09/86 GNDMA1	9 da 20	<u> </u>	E E E	麦 豆 🕏	E E E E E	s s s s s s s	医医医医
== 8 =	3 ug/1 20 ug/1	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	76 66 88 88 88 88 88	7667 8888 8888	20 49/10 20 40/10 20	20 mg/1 20 mg/	20 mg/1 20 mg/
86021 CM-3-1 03/09/88 GNDMAT	# 2	E E E	EE	중 중 중 중		EEEEE	E E E E
= 0 = -	7/65 82 82 86/1	2 2 2 2 2 2 2 2 2 3 2 2 2 2	28 tg/1	75/5 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	20 tg/2 20 tg/2 20 tg/2 20 tg/2	76 60 77 76 60 76 76 76 76 76 76 76 76 76 76 76 76 76	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
86021 CW-3-0 03/09/88 GMDMAT		5 E E	1 2 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EEEE	5 5 5 5 5 5 5 5	EEEEEEE
SITE SAMPLE DATE MATRIX MACID EXTRACT./ BASE MEUT. LAD 1.D.0	(f (f) (f) (f) (f) (f) (f) (f) (f) (f) (¥	rlene hene hory //ret hane	y/Kther ropy/Ether /Phthalate	ilate lene iken/lether	acene ene ene ene ene izidine	ale me me me
ACID EXYRACT./ B	B	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene Benzo(h)Y Lingaothene	Benzo(g,h,i Perylene Benzo(k)Fluoranthene bis(-2-Chloroethory)Methane	bis(-2-Chloroethy Kther bis(2-chloroisopropy Ethe bis(2-Ethylhexy Phthalate	an one of the state and st	Dibenta, hydrhracene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzene	Dimethyl Phthalate Di-n-Butylphthalate 2,4-Dimitrotoluene 2,6-Dimitrotoluene Di-n-Octyl Phthalate
5	402 G	20 40 40 40 40 40 40 40 40 40 40 40 40 40	8 6 9	41.8 412.8 413.8	2545		424 424 424 438 438 438 438 438 438 438 438 438 43

r.e. wright a peiates, inc.

Table 5-21 (Cont'd)
Ground Water Round 2 Base Weutral/Acid Extractable Results

	275 278 278	777777 2888 8888	22222 22222 222222	20 mg/l 20 mg/	20 49/1 100 49/1 100 49/1 20 40/1 20 4
84/021 CN-5-D 03/08/88 GN04/N 183994	ਛੋ '' ਛੋਂ	± ± ± ± ± € ;		2 2 ² 2 2 2 2 2 2 2	
					20 ug/l 100 ug/l 100 ug/l 20 ug/l 20 ug/l 20 ug/l 20 ug/l 20 ug/l 100 ug/l
84021 CB-4-5 03/00/88 GDM/18					222222222222222222222222222222222222222
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			20 ug/1 100 ug/1 100 ug/1 100 ug/1 100 ug/1 20
65021 CH-4-1 03/06/98 GMOMAT 183993					
					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86021 CK-4-D 03/08/86 GROWN 183995					2300 00 100 00 100 00 100 00 100 00 100 00
					76n 176n 176n 176n 176n 176n 176n 176n 1
84021 CH-3-5 D3/09/88 GHOWN I					801 100 890 100 990 10
.	222				1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n
84021 CN-3-1 03/09/88 GNOWAT					801 100 801 20 801 20 801 100 801 100 801 100 801 100 801 100 801 20 801
	222		7/6a 1/6a 1/6a 1/6a	76a	1/6a 1/6a 1/6a 1/6a 1/6a 1/6a 1/6a
B4921 CH-3-D 3/09/08 GB094/I					801 20 801 3 100
.					
SIPE SAMPLE DATE MATRIX		_	9		
\$\$ \$6.5	<u> 2</u>	iene pentadiene e Pyrene	Propylanin ylanine(1) benzene	ee ee	ino. ino. et ky loheno. io. oi. oheno.l
SITE SAMPLE DATE PATRICIT, PASE MEUT, LAB 1.D.6	Fluoranthene Fluorene Herachlorobenzene	lezachl grobstadiene lezachl grocyclopentadiene lezachl groet bane Indeno(1,2,3-cd /Pyrene isophorone tapht bal ene	Kitrobenzene N-Mitroso-Di-a-Propylamine N-Mitrosodiphenylamine(I) Phenanthrene Pyrene 1,2,4-Trichlorobenzene	Benzyl Alcohol -Chloroaniline Olibenzoluran -Hethylnaphthalem -Hitraaniline -Hitraaniline -Hitraaniline -Hitraaniline -Alitraaniline -Chloropenol	2.4-Diecthylphenol 2.4-Diecthylphenol 4.4-Dieitro-Pethylphenol 2.4-Dieitro-Penol
- "					
2	588		######################################	######################################	AR300284

r.e. wright associates, inc.

Table 5-21 (Cont'd)

Ground Water Round 2 Base Neutral/Acid Extractable Results

721 1-5 880 AFF 2	~	22	70 49/1	2	22	2 2	2 8	2	೩ ೩	8	2	2 5	2 %	8	R	\$	_	2	2	2	2	2
86021 HAV-5 03/09/60 GIOMAT	9	8 8	8 6	8	2 2	8 8	3 2	8	중 &	8	2	& 5	2 2	&	&	28		2	盒	8	8	28
	~	2 -	20 ug/l	2	೪ ೩	28	₹ ≈	2	೩ ೩	8	R	2 2	3 2	2	2	\$	೩	೭	೭	8	R	2
86021 HAV-2 03/09/88 GADMAT	12	동 ~	. 55 €	8	ස් ස්	E	E E	2	E E	룚	륦	E 3	E		뙲	줊	蓋	藍	藍	줊	줊	\$
			1/6m &																			
86021 CM-6-5 C3/10/88 GMDMAT	15	2 2	E	蓋	藍藍	<u> </u>	E E	Æ	番番	줊	爱	5	E	200	Ē	蠹	Ē	É	둞	富	줊	E
			2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m																			
86021 CH-6-1 03/10/68 GNOWN I			≅ €											• •		-	- •					
	0 49/]	0 ug/l 0 ug/l	20 ug/1	0 ug/l	0 mg/3	1/6n 0	- (-) - (-)	1/6n 0	[/6i 0	0 ug/1	0 ug/l	/6n 0	0 00/1	1/65 0	0 ug/l	0 ug/1	0 ug/]	1/6n 0	0 ug/]	0 trg/]	0 ug/l	0 ug/l
86021 CN-6-D 03/09/88 GNOWAT 184217		20 20 20 20 20 20 20 20 20 20 20 20 20 2			2 2 20 20 20 20																	
J	1/68	[/6n -	1/65 	1/611	1/6n 01 1/6n 01	1/6n	- 66 - 78 - 78	1/6n -													1/6#	/6n
86021 Cu-5-5 03/09/68 GNOWAT 183986		종 출 후 축		_		_		•		- -	_			_	_	_		-	-	_	199	2
			1/6n																			
66021 CB-5-1 03/08/88 GNDMAT	-		90K																			
03,0																						
SITE SAMPLE DATE INTRIX MATH FYTRATT / BAKS WELLT, 1A8 1.0.8	Acenaphthene					Je	<u> </u>	نه ٔ	_		.											
50			, cue	thene	ylene	bis(-2-Chloroethory Methane	bis(-2-Chloroethyl Jether bis(2-chloroisoorooyl)f the	bis(2-Ethylheryl)Phthalate	-Broaopheny] -pheny lether nty thensy lobt hat a te	lene.	-chlorophenyl-phenylethe		n aceine Izene	isene	1cme	nzidine	4	ate	late	e e	ene ene	ulate
· ,	:	<u>es</u>		luorar	i Per Igoran	010	oroise Oroise	y hery	enyl-i	aphth	heny I	17.7	or other	orober	orobe	lorobe	thalat	htha	풀	rotel	rotoli	T PRE
TO FYTRA	Acenaphthene	Acenaphthy lene	Benzo(a)Anthracene	Benzo(b) Fluoranthene	Benzo(g,h,i)Perylene Benzo(i ¥ luoranthene	13-7-je	13(-2-E) 18(2-C)	3(2-Et)	4-Bromopheny]-pheny] Butythenyylobthalate	-Chloronaphthalene	Chlorop	Chrysene	Diventidan militar etelet 1.2-Dichlorobenzene	3-Dichlarobenzene	4-Dichlorobenzeme	1,3'-Dichlorobenzidine	Diethy lphthalate	Dimethyl Phthalate	Oi-n-Butylphthalate	2,4-Dimitrotoluene	2,6-Dinitrotoluene	Di-n-Octyl Phthalate

r.e. wright as beiates, inc.

Table 5-21 (Cont'd)

Ground Water Round 2 Base Neutral/Acid Extractable Results

-		315	1003		1,000		ECU174		1000	ı	Et.ho.		President		90000		
			-		7		₩-7-MJ		7		200		Cather		7040		
•-	•		28/80/E0		03/08/88		03/04/80		03/10/20		63/10/ea		7-AMI		C-WAR		
 §			CHOMA		CLOSA		CHOCKA		N N								
	ACID EXTRACT. / BASE NEUT. LAB 1.0.0	1.0.1	1460		183984		184217		1844.97		184679		184221		184222		
	中部 经收益 医电子 医电子性 医电子性 医电子性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	**	## ## ## ## ##		84 84 19 85 86 18		11 12 14 14		11 11 11 14				11		11		
	Fluoranthene		蓋	_		40 kg/]	富	/én 完	훒	厂	臺	동	鼋	/s	Ē		
_	Fluorene		~	- F		(f) (md/)	줊		蓋				=	7	•		
 66	Hexach or obeniene		줊	_		10 kg/i	鞷		훒				蠹		霊		
13. E	Hexach lorobut adiene	٠	z	_		[/sin et	줖		3				줆		蓋		
435 8	Herach lorocyclopentadiene		ĕ	_		1/6m 0+	爱		뤁		-		Ē				
136 B	Herach (proet have		룘	_		1/6m 0t	藍		줖				Z		ž		
#37 B	Indeno(1,2,3-cd)Pyrene		줊	_		40 Mg/]	Ē		鼍						鞷		
	Isophorone		줊	_		{/6n 0}	至		줖				墓		富		
- B 657	Mapht halene		22	J./60	_	1 ug/l	藍		m				\$		\$		
8 077	Mitrobeniene		藍			1/6n 0)	鼋		줖				\$		蓋		
442 8	M-Mitroso-Di-n-Propylamine		8			1/6m 0+	藍		줎				흂		롩		
•	M-Mitrosodiphenylamine(1)		蓋			1/6n 0t	Ę		æ				를		둞		
8 177	Phenanthrene		S			40 ug/l	ლ		e				33		으		
458	Pyrene		蓋			(/bn 04	臺		哥				돌		蘦		
8 977	1,2,4-Trichlorobenzene		8			40 mg/l	8		8				富		¥		
# 7.4 B	Benzyl Alcohol		줊			1/6n 0t	롩		룚				蓋		출		
475 B	4-Chloroaniline		鼍			1/6m 04	量		墓				鼋		풀	7	
# 9/t	Dibenzofuran	•	7			10 mg/]	鞷		룚				2		m		
8 (4)	2-Nethy Inaphthalene		'n			40·09/1			출				2		2		
	2-Nitroaniline		æ		-	(Jen 69)			줖		_		Z.		震		
€	3-Witroamiline		蠹			1/6m 00,			8				鼋		2		
-	4-Hitroaniline		ਛ			1/6n mg/]			藍				₹		ž		
•	2-Chlorophenol		震			1/6n 03/			쿒				意		E		
•	2,4-Dichlorophenol		룗			(/gm 04			墓				E		E		
9	2,4-Dinethylphenol					40 mg/l			룜			2 2	률 :		E		
.	T,6-Dinitro-2-Hethylphenol	-	E			1/6n 00			롩						z		
-	-12,4-Dinitrophenol		륦			1/6m 00;			æ i		-		\$		E		
•	L. 2-HILLOPPEROI		E			1/6n 04			E				E :		a 8		
لية	-Kitrophena!		鞷		-	- 100 mg/			를				藍		S		
÷.	(-Chloro-3-Nethylphenoi	_	Z.			40 mg/i			.						E		
Ę	Fent achi orophenoi		970		_	1 J ug/1			1200		-		2300		2		
200	Thenel	-	ස්			10 mg/]			줊			_	章		Ē.		
<u>≅</u>	611 (CQ,4,6-Trichlorophemol		둺			40 ug/1			쯢				爱				
620 6	620 CT - Hethy iphenol		叠			40 mg/l			麗			_	奮		É		
622 A	4-Hethylphenol		줊	76# QZ	爱	40 ug/l	叠	20 mg/]	哥	1/6m Q2	鼋	20 kg/]		29 mg/J	番	20 mg/	
625 A (Benzoic Acid		G D		•	1/6n 00.			줊		_	_	鞷		<u>.</u>		
626 A	2.4.5-Trichlorophenol		蓋		-	.00 uq/l			臺		-	_	æ		E		
		٠															

r.e. wright associates, inc.

Table 5-21 (Cont'd)

Ground Water Round 2 Base Neutral/Acid Extractable Results

heenaphthere Mithracee Benrof a Mathracee Benrof a	22222222222	22222222222	3 -33333333	2 7 2222222	7722222222	2222222222 =	2222222222
is(2-Ethylbery1)Phthalate 1-Bronopheny1-phenylether 1-Chloronaphthalate 1-Chloronaphthalene 1-Chloropheny1-phenylether 1-Chloropheny1-phenylether 1,2-0ichlorobenzene 1,3-0ichlorobenzene 1,4-0ichlorobenzene 1,4-0ichlorobenzidine 1,4-0initrotoluene 1,4-0initrotoluene 1,4-0initrotoluene 1,4-0initrotoluene	801, 20 ug/1 801, 20 ug/1	BDL 20 ug/1 BDL 20 ug/1	801. 60 ug/1 801. 60 ug/1 801. 60 ug/1 13 J ug/1 801. 60 ug/1	801 20 ug/1 801 20 ug/1	801 20 ug/1 801 20 ug/1	801 20 49/1 801 20 49/1 802 20 49/1 803 20 49/1 804 20 49/1 804 20 49/1 804 20 49/1 806 20 49/1 807 20 49/1 807 20 49/1 808 20 49/1 808 20 49/1	 20 68/1/69 00 68/1/69

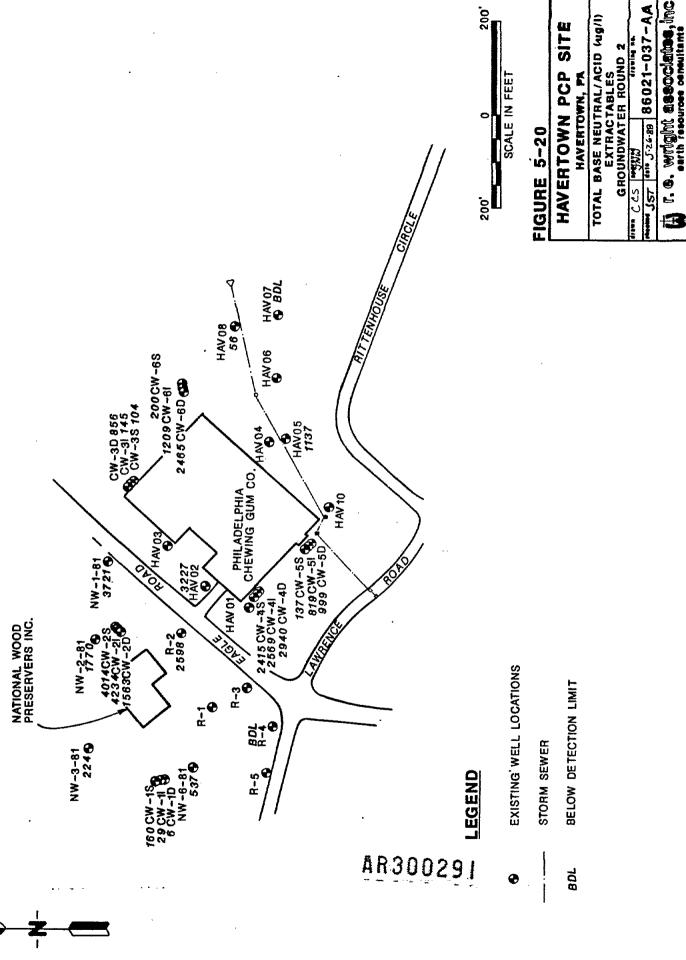
r.e. wright as beiates, inc.

fable 5-21 (Cont'd)
Ground Water Round 2 Base Neutral Extractable Results

	31 15 31 08a	_	B602!		85021 MAN-1	<u>_</u> =	86021	12021	45 è	6021 Ne		86021 10-2-01		12000 12000		2070	<u> </u>	
f :	SATE DATE	93.	/00/69 GROWN		8/80/E0	. gg	63/10/8	8 /8	03/10/98 GB09A1			63/15/88 63/15/88		04/15/		03/15/M	- SP -	
3																	<u>.</u>	
	ACID EXTRACT. / BASE MEUT. LAS 1.0.8	1039	34		2 to 2			.		 "	- "	15384 15384		182387		200		
				2	2	/est 62	-	_		_			/ea e2	\$	/e# &	2		-
(3)	Flagrene			Ž	2	_	`₹	\ \frac{1}{2}			: <u>-</u>		7	2	_	2		7
E .	Herach Jon ober coc			7	룖	_	. e	\$	_	2	7	氢	_	룖	_	重		2
3	Herack or obut adiene			2	2	_	鞷	\$		2	1/64			E	Z #4/1	롩		1/6
435	Herachierocyclopentadiene	-		\ \text{\begin{align*} 2 & \text{\ti}\\\ \text{\tex{\tex	둞		2	\$		2	7	鼍		\$		墓		5
75)	Herach loroethane			75 R	줊	76m @	2	3		8	1/6/	Ē		₹		룖		<u></u>
137 1	Indeno(1,2,3-cd)Pyrene	_		1/5n 82	蓋	29 Kg/	盘		蓋	2	1/6I	<u>\$</u>	29 mg/c	ž	_	훏	8	1
85	Isophorone			76 mg/	룗	_	2	3		2	Z.	Ē		2		፸		<u>~</u>
439	Hapht ha lene	_		1/6m 02	15) KG/	190	6	92	8	<u> </u>			₹,		오 ,		2
9	Mitrobentene			7 4 8	룚	20 mg/	윤			2	<u>~</u>		29. 19.7	롩		Ē		<u>_</u>
145	M-Mitroso-Di-n-Propylamine			70 mg/l	蠹	20 mg/1	윮	\$		R	<u></u>	藍		ਛ	7/6# 0Z	富		<u>Z</u> .
43 8	N-Mitrosodiphenylanine(1)	***		/Sn e2	룚	75n e2	æ	\$	_	R	<u></u>		- 	Ē		룖		<u>_</u>
9 7	Phenanthrene	_		2 mg/	룙	20 09/1	25	/6m Q	_		76			~				<u>~</u> :
\$ \$	Pyrene			乙醇 8	爱	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	=	_	_		- /6			ž		æ		<u>~</u>
9 9 1 1	1,2,4-Trichlorobenzene	_		76n 82	量	[/6n 62	æ	3	_	2	76			鼍		출		<u></u>
# 7.7 13.7	Senzyl Alcohol	-			藍	76 0 €	윤	3	_	ೱ	<u>/</u> 6			Z		룙		<u></u>
475 B	4-Chloroaniline			20 ug/l	童	7/6n &	8	\$		2	7		20 kg/j	줎		震		<u>Z</u>
8 7/7 B	Dibenzofuran			20 kg/l	줊	76n 0Z	_				7			졅		줖		<u>_</u>
# 227	2-Net hy I mapht hallene			20 ug/l	룚	20 mg/1	R			=	<u>~</u>	_		=	7 6	œ		7
192	2-Witroaniline	_		_/§3 	줖	100 ug/	윤	Ş		2	7 6	_		富	100 ug/1	E		7
479 B	3-Eitroaniline	_		1/6a pg/1	8	1/6n na/1	8	8		2	<u> </u>		190 eg/1	줊	[60 ±g/]	풀:		<u></u>
8	4-Nitroandline	-		1/6m 00	쯢	100 Ug/	æ	క్ల		2	<u> </u>			Z	100 mg/l	E		<u>~</u>
¥ 109	2-Chlorophenol			20 mg/l	哥	20 ug/1	윱	3		2	7			E		줊 :		₹.
602 ♣	2,4-Bichlarophenol	ت		20 tg/l	쯢	70 ma/l	윮	3		2	7			출	 			₹.
₩ 609	2,4-Dimethylphenol			26 mg/1	룙	20 ug/1	8	3		2	76			E	29 19/1	E		<u>_</u> :
東	4,6-Dinitro-2-Methylphenol		_	- Fig. 2	Æ	180 mg/	2	8		2	<u>~</u>			E	1/85 BB1	3		<u> </u>
1	2,4-Dinitrophenol	(震	100 tg/	준 (760 000 T		<u>e</u> 8	/6a	≃ ₹		₹ 8	769.00	E 8	2 E	1 /5
\$/1				1/61 S	5 8	/ <u>5</u> 1	€ 8	3 8		₹ 5				E 8		E E		
	4-MILLODERCHOI	6	_		E 8	1/61 6/1	2 2	3 9		3 5	- -			i s	25 PM	3		
	4 - Callet 0 - 3 - mot ny spraceus	-	_		70) (m) (m)	2 8	8		3 2				§ §	/6a /	5		
9			-	20 mg/	į		5 8	\$		3 8				2 2	(A)			: =
2		- -			E 8	1/6n az	26 26	3 5		₹ 5	- T		7 m 1/27	5 6		3 3		. 7
8	C,4,6-it Tentarophenal	- 1			를 :	1/69 07	2	3 :		3 5				ž ž	7 6 9 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9	5 8		- -
R C	2-Methylphenol			7 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	E 8	/§5 62	2 2	3 9		₹ 8	<u> </u>			5 6	- (m)	5 6		1 7
¥ :	4-rectay phenol	6	-		≨ 8	7/bn 62	i i	3 2		2 5	5.7		_ :	5 8	1/6n e/1	ž -		
4 C29	Servoic Acid				5 8	769 961 961	≩ \$			3 8	<u> </u>	ء چ 9		ğ 5		Š		, (c)
W 979	Z-4-3-If tentoraphenol	- . ,		1.65	될	ion and	줌	3		3	-	7	_	Š	_	Š		R

r.e. wright associates, inc.

Table 5-21 (Cont'd)


Ground Water Round 2 Base Neutral/Acid Extractable Results

600 00 00 00 00 00 00 00 00 00 00 00 00	DATE	03/16/88	6	03/16/88 GNDWAT	
2 00000000000	MARRIX	Attento		SECURAL SECURITY	
2 0000000000000000000000000000000000000		EMON'S			
	•				
	NCID EXTRACT. / BASE WEUT. LAB 1.D.8	185697	=	185.698	
000000000000	医甲基金属 不得 医克勒耳氏病 化苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基苯甲基	10 16 14 14 14	ä	****	
e	Acenaphthene		_	텶	<u>≅</u> ,
	Acenapht by Jene	BON. 20 ug/]	=	훒	200
	Inthracene	/6a ()	_	8	20 05
@ @ @ @ @ @	Benzo(a)Anthracette	BOL 20 49/	7	藍	
	Benzo(a)Pyrene	BOL 20 ug/]	<u>~</u>		200
	Benzo(b) Fluoranthene	BOK 20 ug/l	_	펉	20 EG
@ @ @ @	Benzo(g,h,i)Perylene		_	藍	
	Benzo(t)Fluoranthene		=	鼍	50 EG
æ æ	bis(-2-Chloroethory)Methane	BOL 20 kg/l	_		20 113
a	bis(-2-Chloroethyl)Ether		₹		多名
3	bisi 2-chloroisopropy 1)Ether	1/6m 02 ma/	=	쯢	5 R
413 B b	bis(2-Ethylheryl)Phthalate	80t 20 ug/]	_	룗	
•	-Bronophenyl-phenylether	•	=	8	
<u>~</u>	Butylbenzylphthalate	BOK 20 ug/	_	줊	岛风
416 8 2	-Chloronaphthalene	•	~	鼍	图
•	-Chioropheny i -pheny i et her	176n 02 na/1	=	줊	2 2
13 B CT	Chrysene	-	~	줊	2 2
119 B D	Dibenz(a,h)Anthracene		=	藍	含含
420 B	,2-Dichlorobenzene		_	盖	29 63
_	,3-Dichlorobenzene	60t. 20 ug/l	_	젊	
422 B 1	.4-Dichlorobenzene	BDF. 20 ug/]	_	E	室 見
•	3,3'-Dichlorobenzidine	804 40 ug/]	_	藍	4 0 g
424 B D	Diethylphthalate	BDL 20 49/1	=	藍	2 2
æ	Disethyl Phthalate	BOK 20 49/1	~	륦	室 兔
- -	Di-n-Butylphthalate		Į.	ڃ	多思
427 8 2	2,4-Dinitrotoluene	BOL 20 ug/	=	뚪	多名
428 8 2	2,6-Dinitrotoluene	BOL 20 ug/	~	ĕ	20 69
429 B D	Di-n-Octyl Phthalate	15th 02 100	=		S R

r.e. wright as peiates, inc.

Table 5-21 (Cont'd)
Ground Water Round 2 Base Neutral/Acid Extractable Results

11 64021 2 R-4 8 03/16/88	969581	1/4m 6c 100 1/4m 6c		3 2		May BOC 20	62 1/64 1/64	1,64 1,64 1,64 1,64 1,64 1,64 1,64 1,64	20 ug/l 80L 20 ug/l	0 mg/l 80t 20 mg/l	20 ug/l 80t 20 ug/l		169/1 BOL 20	Eg/1 BOK 20	20 ug/l BOL 20 ug/l	40g/1 BDL 20	100, 100 July 20 1/61	ug/1 BDL 20	2	2	8	ug/l Bot 100	ug/! BOL 100	mg/] BDC 200	ug/1 80t 20	ug/1 BOL 20	UG/1 BOX 100	ug/1 BBL 100	ug/1 80t 20	100 100	1 49/1 801 20	ug/1 BOL 100	ug/1 BOE.	Mg/1 BDL	108 /6n	BOK 20	49/1 BOL 100	100 ug/l 89t 100 ug/l
84021 R-2 03/16/88 GMOWA	185697		71			富	륦	8	2	2	E		륦	19	줊	B	8	168	Ē	270	墨		\$	3	\$	B 04	168		2	KO BO	\$	098	108	高	108		13	2
SINE SAMPLE DATE MATRIX	ACID EXTRACT./ BASE NEUT. LAB 1.0.8			Leave the section of	more control of contro	Herachiorocyclopestadiese	Herach orgentiane	Indeno(1,2,3-cd)Pyrene	Sophorone	Hapht halene	Witrobenzene	N-Mitroso-Di-n-Propylanine	N-Mitrosodiphenylanine(1)	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene	Benzyl Alcohol	4-Chloroaniline	Dibenzoluran	2-Hethy Inaphthalene	2-Witroaniline	3-Nitroaniline	4-Mitroaniline	2-Ehlerophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	4,6-Binitro-2-Nethylphenal	2,4-Dinitrophenol	2-Nitrophenol	4-Nitrophenol	4-Chioro-3-Nethylphenol	Pentachlorophenol	Phenol	2,4,6-Trichlorophenol	2-Nethylphenol	4-Nethylphenol	Benzoic Acid	2,4,5-Trichlorophenol
	2	7	2 5	727		35.8	8 927	437 B	8 80	439 8	80 OF	112 8	143	444 8	445 8	446 8	474 8	475 B	476 8	477 8	478 B	479 B	- 88 - 88 - 88	¥ 109	602 A	₩ 609	¥ 78	605 A	₩ 909	₩ /09	₩ 809	₩ 609	610 A	611 A	₹50 ¥	622 A	625 ♠	₹59

The results of these analyses, shown on Table 5-22, indicate that no PCBs were found in the groundwater above procedural detection limits. In addition, pesticides were only detected in three wells, NW-3-81, R-4, and CW-2D. Well NW-3-81 contained 0.33 ug/l of gamma-BHC, while CW-2D contained 0.73 ug/l of gamma- and delta-BHC. A duplicate sample taken from CW-2D had no pesticides above detection limits. Well R-4 contained 0.22 ug/l of dieldrin. The remaining monitoring well samples did not have pesticide concentrations above detection limits.

5.3.5.2.5 <u>Cyanide and Oil and Grease</u> - Cyanide and oil and grease analyses were performed on groundwater samples taken from the 10 selected existing and 18 newly installed monitoring wells. The results of these analyses are presented in Table 5-22.

Cyanide was only detected in one of the sampled wells, CW-5D, at a concentration of 27 ug/l. There is no indication of the source of cyanide in this bedrock monitoring well.

Oil and grease (O & G) results are also shown on Table 5-22, and reveal that 12 of the 28 wells sampled contained concentrations greater than the detection limits. Well NW-1-81 had the highest O & G value, 12 mg/l, although it contained no noticeable floating oil. Wells with floating oil in them, R-2 and HAV-02, were found to have O & G levels (BDL and 5.4 mg/l respectively) lower than well NW-1-81. Wells of the CW-2 series show a minor decrease in O & G levels with depth. This trend is apparently localized since the CW-3, CW-4, CW-5, and CW-6 series wells show a slight increase in O & G concentration with depth.

Table 5-22

Ground Water Round 2 Pesticide/PCB and Oil & Grease and Cyanide Results

	3118 SAMP	86021 CW-1-0	86021 CW-1-1	86021 CW-1-S	86021 CH-2-0	86021 CH-2-0-04P	86021 CH-2-1	86021 EW-2-S	
	DATE	03/14/88 6404AT	03/14/88 GROUAT	03/14/88 GHDMAT	03/14/88 SADMAT	03/14/86 GBDIA1	03/14/08 CMCMAT	03/14/88 GMD4AT	
2	PESTICIDE/ PCB LAB 10 8		185183	185144	3 50	185189	145149	185133	
		# 100 mm			HOY 0.05 up/1				15 trq/]
	ALCAN IN	ROLD OF 40/1	MD 0.05 ug/)	BDL 0.05 ug/1	0.0	BOL 0.05 uq/]	80C 0.05 ug/	BOL 0.05	
_	86TA-834C	9.0	9	0.0	9.0	0.05		藍	1/gn s(
2	GATTA - BIT	0.05	0.0		0.38 49/1	0.05		蓋	
	06.1A-84C	0.0	0.0	.e.		0.0	9.03	E	
	4.4*-001	-	9.	3	-	-	=		
	300-,7*7	-	-	5	9	9.	<u>.</u>	=	
_	4*4*-000	2.	9	80t. 0.1 mg/l	- -	3	3	盖	
	DIELDRIN	<u>.</u>	<u>.</u>	 -:			=	ਛ	
•	Endosulfan I	0.0 S	S	0.0	 	0.03		.	
712 P	Endosulfan II		 		-	3	=	Š	
	EMPOSULFAM SULFATE	-	<u> </u>	-	<u>.</u>	= :		E	
		: ;	3 5	3	3 5	= 5	: ;	5 2	
. .	REPLACING OF COUNTY		3.5	ે ક ડે ફ		3 5	5 5 5 5	5 8	
	ACTIMENTALIN CPUALINE PPD-1242	3 -	90. 0.03 kg/1	90f. 0.00 dg/!	RN D.S. ro/	EN 6.5 mg/	90 0.0 mg/	20.00	/ea -
	PCB-1254		: -	-	-	-	-	E	
	PCB-1221	S	0.5	5.5	0.5	5.0	2.0	E	
_	PCB-1232	0.5	6.5	9.5	0.5	0.5	BOL 0.5 ug/	麗	0.5 bg/l
_	PCB-1248	0.5		0.5	0.5	0.5	0.5	_	_
_	PCB-1260	_	_		-	_	_		1 wg/1
<u>.</u>	PC8-1016	8DL 0.5 ng/1	80. 0.5 49/1	BDL 0.5 ug/1	BDL 0.5 ug/	BOL 0.5 ug/1	BOL 0.5 kg/	ē	.5 gg /
. . (FOXAPPERE	- :	- 1	- ;	(- 4	~ ;		Z 5
	F.F FE INDA I CHEUK		? -	? -		? - ⇒ e			
. 0	ENUMBER ACTUME	- v	- v			 		E E	
78.0	Same Chlordane	BOL 0.5 49/1	BOL 0.5 ug/]	BOL 0.5 kg/l		60L 0.5 mg/]			- 1/6m S:
			•	}	}	!			•
		\$07CB1	E02C81	107581	C02C81	907581	707081	/61091	
ت	1033 C Oll and Greate		801 1 19/1	80. 1 19/	1,1	1/60	1.3		7
									•
ပ	C CYMIDE	10 ng/1	60t 10 ug/l	BOL 10 ug/l	BOL 10 kg/l	90t 10 ug/l	80t 10 ug/1	ž	10 mg/
AR300293	#DOG no co								
,									

r.e. wright associates, inc.

Table 5-22 (Cont'd)

Ground Water Round 2 Pesticide/PCB and Oil & Grease and Cyanide Results

PESTICIDE/ PCE LAB 10 # 144218 184220 184220 184219 1842		STIE SAMPLE DATE MATRIX	84021 CH-3-D 03/09/88 GNOWAT	= - 2 = -	03/09/06 CH-3-1 GHOHAT		84021 CW-3-S D3/07/88 GNDMAT	25 M M M M M M M M M M M M M M M M M M M	64021 CW-4-D 03/00/PB	5. T \$ 5	86021 CH-4-1 63/06/66 GHOWAT	まっ 常 5	84021 CH-4-5 63/06/86 CHOWN	2 Y 2 L	84021 CH-5-0 03/09/86 GNOWN]	
BOL 0.05 wg/ BOL 0.1 wg/ BOL 0.2 wg	PESTICIDE/ PCB	L/8 10 ¢	164218		114220	ŕ	104219		183995		183993		183962		18384	
BOL 0.05 wg/ BOL 0.10 wg/ BOL 0.10 wg/ BOL 0.11 wg/	-	9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	3					_		ξ. [/ex.]		1/m/ 50 6	2	# 85 wo/1		_
600, 0.05 ug/1	25-55-			_			豆				E	0.05 uq/1		8	8	0.05 89/1
BOL 0.05 wg/ BOL 0.15 wg/ BOL 0.15 wg/ BOL 0.15 wg/ BOL 0.15 wg/ BOL 0.1 wg/ BOL 0.2	J.A835			_			Ē			0.05 Me/1		1.05 tra/1	2	0.05 #4/	Š	-
BOL 0.10 wg/ BOL 0.11 wg/ BOL 0.05 wg/ BOL 0.05 wg/ BOL 0.11 wg/	358-5545						蓋					- 1		8	2	
MOL 0.1 wy/ BOL 0.2 wy/ BOL	1.17-5EC						臺					_	8	8	S	
BOL 0.1 ug/ BOL 0.05 ug/ BOL 0.05 ug/ BOL 0.05 ug/ BOL 0.1 ug/ BOL 0.5 ug/	193-,+						臺						줊	2	藍	0.1 mg/l
BOL 0.1 mg/l BOL 0.1 mg/l BOL 0.1 mg/l BOL 0.1 mg/l BOL 0.0 mg/l BOL 0.1 mg/l BOL 0.1 mg/l BOL 0.1 mg/l BOL 0.0 mg/l BOL 0.0 mg/l BOL 0.0 mg/l BOL 0.1 mg/l BOL 0.0 mg/l BOL 0.1 mg/l BOL 0.0 mg/l BOL 0.5 mg/l BOL	300-,+											0.1 tq/l	ž	3	줊	
BOL 0.1 ug/ BOL 0.1 ug/ BOL 0.05 ug/ BOL 0.1 ug/ BOL 0.2 ug/ BOL 0.2 ug/ BOL 0.2 ug/ BOL 0.2 ug/ BOL 0.3 ug/	9901												2	-	<u> </u>	
BOX 0.05 ug/1 BOX 0.10 ug/1 BOX 0.05 ug/1 BOX 0.1 ug/1 BOX 0.10 ug/1 BOX 0.10 ug/1 BOX 0.05 ug/1 BOX 0.0	ECONTH												జే	5	至	
SDE	ndosuliam i										_		蓋	<u>8</u>	출	
Section Sect	Adosulfam II												穒	-	ᄛ	
BOL 0.1 ug/ BOL 0.1 ug/ BOL 0.0 ug/ BOL 0.05 ug/ BOL 0.5	HOUSULFAN SULFATE												Ē	-	Ē	
BOL 0.05 ug/ BOL 0.5	- NEW -												2	=	畫	
(10E	PTACHLOR												蓋	S.	. K	
BOL 0.5 ug/l BOL 0.5 wg/l BOL 0.5 wg/l BOL 0.5 wg/l BOL 1 ug/l BOL 1 ug/l BOL 1 ug/l BOL 1 ug/l BOL 0.5 wg/l BOL 0.5 ug/l	PTACHLOR EPOXTOE												<u>e</u>	Ę,	夏	
BOL 1 ug/ BOL 2 ug/ BOL 3 ug/ BOL	B-1242												豆	5	- 秦	
BOL 0.5 ug/ BOL	8-1234												E	-	롩	
BOL 0.5 ug/l BOL 0	B-1221												富	5.		
BOX 0.5 ug/ BOX	8-1232												Ē	S	룗	
60t 1 ug/1 60t 0.5 u	:B-1248												憲	S	둞	
801 0.5 ug/1 801 1 ug/1 801 0.5 ug/1 801	8-1260												Ē	-	Æ	
BOL 1 ug/ BOL 0.5 ug/ BOL 0	B-1016												Ē	٠. د	E	
08	XAPIENE												쥹	_	章	
801 0.1 ug/1 801 0.1 ug/1 801 0.1 ug/1 801 0.1 ug/1 801 0.5 ug/1 801 0	P*-NETHOXYCH.OR												륦	5.5	2	
BOL 0.5 ug/1 BOL 0	ORIN KETONE												돈	=	爱	
BOL 0.5 ug/l BOL	pha Chlordane												鼋	Š.	풆	
	nes Chlordane												30	0.5	젊	
BOL 1 mg/l BOL 1 mg/l 1.4 mg/l	OIL & GREASE	LAB 10 #	184230		184232		184231		184028		184203		184018		184030	
7 /5m e-1 1 /5m t 1 /5m t 1 /5m t 1 /5m t	Constitution of the state of th	#C +C +C +C +C +C +C +C +C +C +C +C +C +C	# E	-		754	11 7	7		4/64	-	na/ka		1 100/80	2 E	-04/pa
		•	Ē	- /s			:		J	n i	2		É	h h	;	î À
80. 10 uq/1 80. 10 uq/1 80. 10 uq/1	CYAMIDE		8	10 ua/1	8	10 49/1	8	10 ac/	薯	10 89/1	8	10 49/1	8	10 49/1	23	1/6A

r.e. wright as Loiates, inc.

r.e. wright associates, inc.

d)
(Cont
5-22
Table

Results
Cyanide
and
Grease
હ
011
and
PCB
esticide/
7
Round
Water
Ground

187764 1	SITE	12098 12098	86021 CH-5-S	86021 1208	17098 179-P-13	86021 11-4-8	84021	86021 HAN-5
187784 187784 18477 18		03/09/88	63/08/68	88/60/60	03/10/88	03/10/68	03/04/88	88/60/60
187764 187704 18770 18447 18447 18447 18472 18						PACK!		CACHAT
0.05 ug/1		183994	183984	184217	184697	184699	184221	184222
0.05 wy/		0.05		0.02	0.0	0.05	0.05	0.05
0.05 uy/) 800 0.		0.05		0.05		9.05	0.05	0.02
0.05		0.05		0.0	0.0	9.0	0.0	
0.05 uy/		0.0		0.0		8.5	S	0.0
0.1 ug/1		S	EQL 0.05 ug/1	e. S: 3		S. S	6.9	<u> </u>
0.11 ug/7		6	80. 0.1 ug/1	5	-	- -	: ·	3 6
0.1 ug/1		·	BOL 0.1 4g/3	- -	5 6	5 6		•
0.05 ug/1 60t, 0.55 u		- -		= ·	 	= ·		= - = -
0.1 ug/1 60t 0.5 u		3 3		<u> </u>		: ¿	3	:
0.05 ug/l 600 0.1 ug/l 600 0.5		§ ;	1/60 CO.O. MA	e :		e .	<u> </u>	ਤੂ : = :
0.05 ug/1		3		; ;		3 6	5	
0.05 ug/1 800, 0.05 u		= =				- - - -		
0.05 ug/l 800 0.05 ug/l 801 0.5 u		5		. 5		; ¿	5	; {
0.5 ug/1		3 5		3 6		5	5	
1 mg/1 80t 0.5 m		2		0.5		0	0.5	0.5
0.5 ug/1		-		-		-	-	_
0.5 ug/l 80t 0.5 u		6.5		6.5	5.0	5.0	9.5	5.5
0.5 ug/l 60t 1 ug/l 60t 0.5 ug/l 60t		0.5		6.5	0.5	0.5	0.5	S.
1 ug/1 80t		0.5		0.5	0.5	0.5	0.5	6.5
0.5 ug/l 800, 0.5 ug/l 800, 0.5 ug/l 800, 0.5 ug/l 801, 0.		- ;	- 1		- ;	- ;	(- ;
1 10 g/1 801 1 10 g/1 802 1 10 g/1 802 1 10 g/1 803 1 10 g/1 804 0.5 g/1 804		٠			٠. د	Σ	Ç.	? -
0.5 ug/1 80t 0.5 ug/1 80t 0.1 ug/1 80t 0.2 ug/1 80t 0.5 u			- :	- ;				
0.5 ug/1 80L 0.5 u			∍ c	? • •		? ←		? =
0.5 ug/1			- ×	- ·				
184019 184229 184706 184707 184233 184234 184734 10 49/19 10 49/19 10 49/1 10		5.0		. S.		0.5	0.5	
#g/kg 2.9 #g/kg 1 #g/l BDL 1 #g/l 5.4 #g/l 1.8 10 #g/l 10 #g/l BDL 10 #g/l B		184026	184019	184229	184706	184707	184233	184234
#g/kg 2.9 #g/kg 1 #g/l BDL #g/l BDL #g/l 5.4 #g/l 1.8								
10 ug/l 80t 10 ug/l 80t 10 ug/l 80t 10 ug/l 80t 10 ug/l 80t.				1/60 1		_		
								BOL 10 kg/l
		^					•	
						•		

r.e. wrightas (clates, inc.

Table 5-22 (Cont'd)

Ground Water Round 2 Pesticide/PCB and Oil & Grease Cyanide Results

84021 184.4-84 62/15/88 62/15/88 185369		1/64 50.0 100 1/64 50.0 100	S	S :		_		BOL 0.1 #g/l		60, 0.1 ug/1	0.05	.	<u>-</u>	<u>:</u>	0.05	9.05	0.5	_	POL 0.5 ug/1	5.0	S	- 4	? -		; -		3 6	: •	1853%	15 14 14 11	1.5 19/1	50c 10 kg/l	
84021 144-3-81 6403415/86 640347 145387		BOL 0.05 #9/1	8	8		8		90t 0.1 kg/f	BOK 0.1 kg/l	-	0.05		<u>:</u>	=	6.0	.	0.5	_	BOL 0.5 ug/]	S	S. 0	- ;	? -			- u		?; ⇒	185395	***	BDL 1 #9/1	80L 10 ug/1	
\$8258 18-2-84 18-2-84 18-2-169 18-2-164		9.65	e 5			S	_				9.03	<u>.</u>	9.	:	0.05	0.05	0.5	-	BOL 0.5 49/1	.5	.5	- ;	267. 4.3 Mg/L	- 0	3 -	- ·	5		185394	*****	1.8 8.1	BOL 10 49/1	
84021 M2-1-81 DUP 03/10/88 EMGMA!		BOK 0.05 Mg/1	8	6 .6		6.03	-	BOL 0.1 Mg/]	BOL 0.1 kg/1	9	9.03	<u>=</u>	÷.	9.1	0.05	0.05	0.5	-	BOL 0.5 ug/1	6.5		- ;	3.	- 4		- ; • •		5	184712	# # # # # # # # # # # # # # # # # # # #	13 mg/l	BOL 10 ug/l	
84021 MG-1-81 03/10/88 GH0/41 184300		BOL 0.1 49/1	3	BOL 0.1 kg/l	-	<u>;</u>	0.7	0.5	9.2	-	÷.	0.2	0.5	0.2	6.	<u>:</u>		2	80K 1 49/1	_	- ·	7 .	⊸ ი	٠.	- ·	7.		-	184710	11 44 11 11	12 11971	BOL 10 eg/1	
84021 HWW-8 03/00/06 GMDMAT	111	9.05	0.0	_	9.93	9.0	-	7		<u>-</u>	6.05	=	-	3	0.05	0.0	0.5		80t. 0.5 ug/i	9.5	S. O	- (3.	- 4	3 6	= ·	٠. ت		184032	## EE ## ##	80k 1 mg/kg.	BOL 10 ug/1	
84021 1844-7 1847-7 1854-7 1834-7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	6.0		0.05	0.0	9	5	<u>.</u>	3	0.05	3	<u>-</u>	<u>:</u>	0.05	0.05	6.5	_	90t. 0.5 kg/l	6.5		- ;	 		3	= =			184031		80t. i wg/kg	BDL 10 ug/1	
STRE SAWELE PATE INVIRITY PESTICITIES POTE LAS 10 A			į,		دع	دع ،						in 11	EMBOSULFAN SULFATE		É	FPTACHLOR EPOXIDE			٠						ייני אוני איני איני איני איני איני איני	J. Water	lordane	ordane	OIL & SREASE LAS ID #		rease		
e e e e e e e e e e e e e e e e e e e		701 P. ALDRIM	702 P. M.PIM-BHC	_	704 P CANEE BIRC	_			_	_	۵.	_	۰.	_	۵.	_	۵.	719 P PCB-1254	-	۵.	٠.	o. (- ·					- And Same Chloropes	0	C	1943 £ 011 and Srease	96	,

Table 5-22 (Cont'd)

Ground Water Round 2 Pesticide/PCB and 011 & Grease and Cyanide Results

			0.05 ug/l	0.05 ug/l	0.05 ug/l	0.05 ug/l	0.05 ug/l	0.1 ug/]	0.1 ug/l	0.1 ug/l	/ga/	0.05 ug/l	0,1 kg/l	0.1 ug/l	0.1 kg/l	0.05 tg/l	0.05 ug/l	0.5 ug/l	1 ug/l	0.5 ug/l	0.5 ug/l	0.5 ug/l	mg/	0,5 ug/l	1 wg/1	0.5 ug/l	0.1 ug/l	0.5 ug/l	0.5 wg/l			1/64	10 mg/1
86021 R-4 03/16/88 GMUAT	105.204	10.00	168	Ē	<u>e</u>	2	8	뚪	藍	쯢	0.23	霊	墓	룛	륦		爱	藍	룚	叠	æ	ਛ	囊	富	É	8	ڃ	富	2	185704););););	-	훒
			1/gn 50.0	0.05 ug/l		0.05 ug/l		0.1 ug/l	<u>:</u>		0.1 ug/l	1/6n 50'0	0.1 ug/l	1/6n 1.0	0.1 ug/i	0.05 ug/l		0.5 ug/l	wg/	0.5 ug/l	0.5 ug/l	0.5 mg/l	1/6n !	0.5 ug/l	1/6n 1	0.5 ug/l	0.1 ug/l	0.5 ug/l				1/64 1	10 eg/1
86021 R-2 03/16/88 GRD#A1	100103	16367/	曼	褔	番	8	B 04	Ē	蓋	ED TO	蓋	8	鼍	ස්	麗	33	盏	줊	蓋	툪	盘	e e	蓋	E	爱	igi Bar	量	臺	畜	185702	##	108	Æ
SITE SANPLE DATE MARIX	A CL RA GOD STATES	FESTIVE FOR FROM TO A	ALORIN	AL PMA-BIFC	361A-64C	GANTA-BIC	DEL TA-BMC	10-,+,+	300-, 7,7	4'4'-B00	DIELORIM	Endosulfan 1	Endosulfan 11	ENDOSILLEAM SULFATE	ENDRIN	HEPTACHLOR	HEPTACHLOR EPOXIDE	PCB-1242	PCB-1254	PCB-1221	PCB-1232	PCB-1248	PC8-1260	PC8-1016	TOXAPHEME	P,P**NETHOXYCH.OR	EMDRIN KETONE	Alpha Chlordane	Ganna Chlordane	OIL & GREASE LAB 10 #	## ## ## ## ## ## ## ## ## ## ## ## ##	Oil and Grease	CYANIDE
	O.		701 P	702 P	703 P	704 P	70S P	707	708 P	709 P	710 P	711 P	712 P	713 P	714 P	716 P	717 P	718 P	719 P	720 P	721 P	722 P	723 P	724 P	725 P	726 P	739 P	747 P	748 P			1033 C	ú

The O & G data from Table 5-22 are presented in Figure 5-21 to depict the distribution of O & G. A minor trend toward O & G concentrations increasing in the bedrock, while decreasing in the saprolite units, is shown as one moves from west to east downgradient across the site.

5.3.5.2.6 <u>Dioxins and Dibenzofurans</u> - Groundwater samples from sampling round #2 were analyzed for dioxin and chlorinated dibenzofuran isomers by CompuChem's sister laboratory, ChemWest. The results of this analysis are shown on Tables 5-23 and 5-24. The primary dioxin isomers identified in the groundwater samples were hepta-, 1234678-hepta-, and octa-chlorinated dibenzo-p-dioxin species.

To better evaluate the spatial relationship of the data, the dioxin isomer groups identified were summed and plotted on Figure 5-22 in parts per trillion (ppt). The anticipated upgradient cluster well series CW-1, shows that dioxin was found in a relatively small amount (1.6 ppt) in only the shallow monitoring well (CW-1S). The presence of dioxin in only the shallow well may be the result of vertical migration, or leaching, of dioxin from potentially contaminated surface soils. This may also be the case for the existing well NW-3-81 The highest concentration of dioxin found in this sampling round was at the existing well NW-1-81 (5331 ppt). Judging from the wells sampled around NW-1-81, it would appear that the dioxin is most concentrated near this well. The reason for the dioxin concentration at NW-1-81 is undetermined, as the well does not contain the free-floating contaminated oil in it as Therefore, it would seem that do wells R-2 and HAV-02.

r.e. wright as Ciates, inc.

Table 5-23

Ground Water Round 2 Dioxin Results

_			-		CW # : 1166-2	36	E	766	12378 Pec00 804 0.77		168	368	8	368	8	
_	_				1166-4	ppt 800, 0,59	Ppt 80L 0.52	Pot 1.1	ppt 90t 1.1 ppt	Pot 850. 0.77	Pet BBL 0.77	PP 801 0.77	ppt 800, 0.77	apt BDL 0.89	ppt 801. 0.89	200
B4021	?-: 5	185212	8-1-Y	12:44	1166-5	0.37	3	0.73	80t. 6.78 ppt	0.59	0.62	0,62	0.62	99.0	9.9	
84021	CH-2-\$	185139	4-13-88	22:00	1-9911	6.67	3.0	0.73	80t. 0.79 ppt	0.7	0.7	0.3	6			
12090	CH-2-I	185208	4-13-88	91:EZ	1166-3	0.45	0.₹	9 .	BOL 0.84 ppt	9.6	9.6	9.0	9.64	5	5	
06021	CH-2-D	18214	\$ -	18:26	1166-7	=	=	\simeq	BOL 1.7 ppt	:	.: S:	5	1:5	8.	g.	,
18002	CH-2-0 (00)	185213	89-71-7	17:50	1166-641	0.7	0. 7	-	BOL 1.4 ppt	=	<u>.</u>	<u>:</u>	<u>.</u>	1.2	-2.	-

r.e. wright associates, inc.

۷

Table 5-23 (Cont'd) Ground Water Round 2 Dioxin Results

86021	CH-5-S	184306	88-10-7	15:15	1141-2		0.27	0.22	0.5	0.5	0.35	9.35	0.35	BOL 0.35 ppt	Ξ	Ξ	-
86021		184041	88-80-)	16:31	1141-5		0.13	980.0	0.45	0.45	0.29	9.3	0.29	BOL 0.29 ppt	9.18	9.18	0.72
86021		184037	88-80-7	11:43	E-1711									BOL 0.46 ppt			
86021	S-+-80	184033	4-69-89	14:35	1-1-1		BOL 0.19 ppt							80t. 0.43 ppt			
86021	Q-2-30	184239	88-60-	11:33	1161-2		0.15	0.17	e	6 .	S	35.0	6.5	BOL 0.56 ppt	9.	9.48	6.9
86021	CM-3-1	184240	88-60-7	15:44	1161-4		0.43	0.31	2.0	2.0	<u>.</u>	2:	<u>.</u> .	60t. 1.5 ppt		=	7.4
12098	CH-3-S	184239	8 3-60- 7	12:06	1161-3				0.59	0.59	Ξ	Ξ	Ξ	80. 1.1 ppt	98.0	8.0	2.0
SITE:		# C & C	GC/NS DATE:	6C/KS 11KE:		CDP MAME	1000			12378 PeCD0		_	123678 HrCDD	123789 HrCD0	HpC00	1234678 Hpc00	6630

r.e. wright as clates, inc.

Table 5-23 (Cont'd)

Ground Water Round 2 Dioxin Results

B\$021	C-AW	184242	88-40- +	<u>8::</u>	9-1911		0.23	BOL 0.24 PP!	₹	Ξ	0.7	0.74	0 .7	<u>5.</u>	0.63	69.0	
86021	7-AVH	184241	88-60-P	13:22	S-1911		0.32	BOL 0.52 ppt	1.2	. .	0.92	0.92	0.92	0.42			
84021	1-9-K1	184235	28-40-	98:01	1-1911			BOK 0.39 pot	6.83	6.83	2.9	6. 3	9.95	6.9	0.35	0.35	
B6021	1-e-1	184713	4-13-84	17:28	1-6911		0.26	BOL 0.26 ppt	0.57	0.57	0.43	0,43	0.±3	0.43	0.52	0.52	6.3
12021	ρ- φ-# 7	184716	4-13-83	18:31	1163-2		9.19	BOC 0.19 ppt	0.51	0.51	8	9.38	男.	8,0	0.47	0.47	9.64
12099	3-C-12	184042	23-20-7	11:11	7-17		0.15	80L 0.13 ppt	0.57	0,57	7	₹.	₹.	0.4	9.3	98.0	89.
1205B	1-2-87	010181	88-8- -	15:53	1141-4		0.12	BOL 0.17 ppt	8	8	0.51	0.51	0.5	€.0	9.3	9.3	80t 0.83 ppt
SIRE			EC/IS PATE:	CC/NS TIME:	: - 3	COP NAME	100	2378 1000	Pecoo	12378: PeC00	HACOD .	123478 HxCOD	123678 HxCD0	123789 Hrco0	HeCDD	1234678 Hpc00	

r.e. wright associates, inc.

Table 5-23 (Cont'd)

Ground Water Round 2 Dioxin Results

86021 M4-6 185399 4-14-88 20:22 1179-3	801 0.77 ppt 801 0.77 ppt 801 0.77 ppt 801 0.53 ppt 801 1.2 ppt 801 1.2 ppt 801 1.5 ppt 801 1.5 ppt 801 1.5 ppt
84021 MN-3 185398 4-14-88 19:44 1179-2	800 0.68 ppt 800 0.68 ppt 800 1.1 ppt 801 1.1 ppt 801 1.0 ppt 801 1.0 ppt 801 1.0 ppt 801 1.1 ppt 801 1.1 ppt
86021 M4-2 185397 4-14-88 19:06	BR 0.67 ppt BR 0.67 ppt BR 1.2 ppt BR 1.2 ppt BR 0.98 ppt BR 0.98 ppt BR 0.98 ppt 2.4 ppt 13.1 ppt
86021 MM-((OUP) 1847188X 4-15-88 12:19 1163-4RX	801. 17.7 ppt 801. 18.9 ppt 801. 27.3 ppt 801. 19.7 ppt 801. 19.7 ppt 801. 19.7 ppt 801. 19.7 ppt 317 ppt 2425 ppt
86021 MA-1 1847178X 4-15-88 11:38 11:38	80t 10.3 pot 80t 16.2 pot 80t 24.4 pot 80t 24.3 pot 80t 19.6 pot 80t 19.6 pot 80t 19.6 pot 850 19.6 pot 877 pot
86021 HAV-8 184044 4-08-68 18:30	89, 9,21 ppt 80, 0,21 ppt 80, 0,84 ppt 80, 0,84 ppt 80, 0,57 ppt 80, 0,57 ppt 80, 0,47 ppt 80, 0,47 ppt 80, 0,47 ppt
86021 HAV-7 184043 4-08-88 17:52 1141-7	801 0.17 ppt 801 0.19 ppt 801 0.59 ppt 801 0.59 ppt 801 0.44 ppt 801 0.44 ppt 801 0.45 ppt 800 0.045 ppt 800 0.045 ppt
STTE: POINT: 1.08 TO 1: 6.6.//S ONTE: 6.6.//S TINE: 1.01	

r.e. wright as clates, inc.

Table 5-23 (Cont'd) Ground Water Round 2 Dioxin Results

85021 R-4	165709	8-1-	21:38	1185-2		=	=	0.72	BOL 0.72 ppt	€.	9.8	0.81	<u>e.</u>	8.83	6.0	2.6
86021 R-2	185706	#-1	20:59	1183-1		19.0	9.9	2.2	BOL 2.2 Pot	=	8.	=	æ		_	
SITE: POINT:	1.48 10 #:	CC/NS DATE:	CC/NS TIME:	 3												
	•				SAME GOO	100	2378 TC00		12378 PeCDD			123678 H1CDD			1234678 HpC00	

r.e. wright associates, inc.

Table 5-24

Ground Water Round 2 Dibenzofuran. Results

(an)															
86021 CW-2-0 (0 185213 4-14-88 17:50		0.47 Ppt													
		E 8	E	E E	Ē	8	囊	줊	룚	\$	죭	叠	爱	藍	幺
56021 18-2-0 185214 1-14-88 18:28	. 1	0.4 20 20 20 20 20 20 20 20 20 20 20 20 20			_	_		_	_	_	_	_	_		_
*****		E 8													
86021 Cu-2-1 185208 4-13-88 23:16		0.24 ppt	77.0	0.42	0.42	0.45	0.33	0.33	0.33	0.33	0.33	0.65	0.65	0.55	
	ğ	5 8	5 6	풀	룖	\$	蓋	\$	盏	蓋	뚌	盏	蓋	줊	1.7
66021 CW-2-5 165139 4-13-88 22:00 1166-1	4	100 57.0	3.5		6.0	0.3		0.3	0.3 E.0	0.3	0.31		0.7	0.3	
	Ē	E 8	5 6		鞷	幕	7.	쫉	蠹	2	蓋	=	2.8	훒	23.0
B6021 CW-1-D 185212 4-14-88 15:44 186-5	5	100 /7:0 100 /7:0	97.9		0.33	0,35	0,34	0.34	0.34	0.34	0.34	9.48	÷.0	0.49	1.2
	ž	1	5 2		齠	蓋	줊	蓋	줊	æ	튪	臺	翻	줊	룚
86021 CH-1-1 185211 4-13-88 23:58 1166-4		9.31 ppg 2,3 ppg													
	3	E 8	E 8		줖	풀	룚		줊	æ	줎	Æ	줊	퓶	쿒
86021 CH-1-5 185207 4-13-88 22:38		0.19 ppt													
	ş	E 8	5 8	₹	룚	룗	æ	89	藍	S.	줊	풆	룚	叠	뙲
STTE: POINT: LAB 10 9: GC/NS DATE: GC/NS TIME:															
	COP NAME	4030 SEPE												34789 HPCDF	

r.e. wright as Joiates, inc.

Table 5-24 (Cont'd)

Table Water Round 2 Dibenzofuran Results

66921 CM-5-5 184306 4-04-84 15:15 1141-2	160.0		804 0.18 ppt 804 0.18 ppt 804 0.18 ppt 904 0.18 ppt 0.93 ppt	 5
04021 184041 184341 141-5	0.047	0.12 0.12 0.12	801 0.14 ppt 801 0.14 ppt 801 0.14 ppt 801 0.14 ppt	8,8,8
66.021 CW-4-1 184037 4-08-88 11:43	0.091	6 6 6 6	60t 0.2 ppt 60t 0.2 ppt 60t 0.2 ppt 80t 0.2 ppt 80t 0.2 ppt	0.57
86021 CH-4-S 184033 4-06-8# 14:35	0.04 0.16	0.2 0.2 0.18	801 0.18 ppt 801 0.18 ppt 801 0.18 ppt 801 0.18 ppt	33.
86021 CB-3-D 184238 4-09-88 11:27 1161-2	0.068	0.2 0.2 0.29	BDL 0.28 ppt BDL 0.28 ppt BDL 0.28 ppt BDL 0.28 ppt	3.5.9
84021 CH-3-1 184240 4-07-68 12:44 161-4	0.22	0.3 2.3 2.4 3.4 3.4	80t. 0.67 ppt 80t. 0.67 ppt 80t. 0.67 ppt 80t. 0.67 ppt	222
84021 EM-3-5 184239 4-09-80 12:06	0.088	0.2	80t. 0.28 ppt 80t. 0.28 ppt 80t. 0.28 ppt 80t. 0.28 ppt	3.4.3
SITE: POINT: LAB ID 0: 6C/NS DATE: 6C/NS 1196:			123478 HrCDF 123678 HrCDF 124678 HrCDF 123789 HrCDF	

r.e. wright associates, inc.

Table 5-24 (Cont'd)

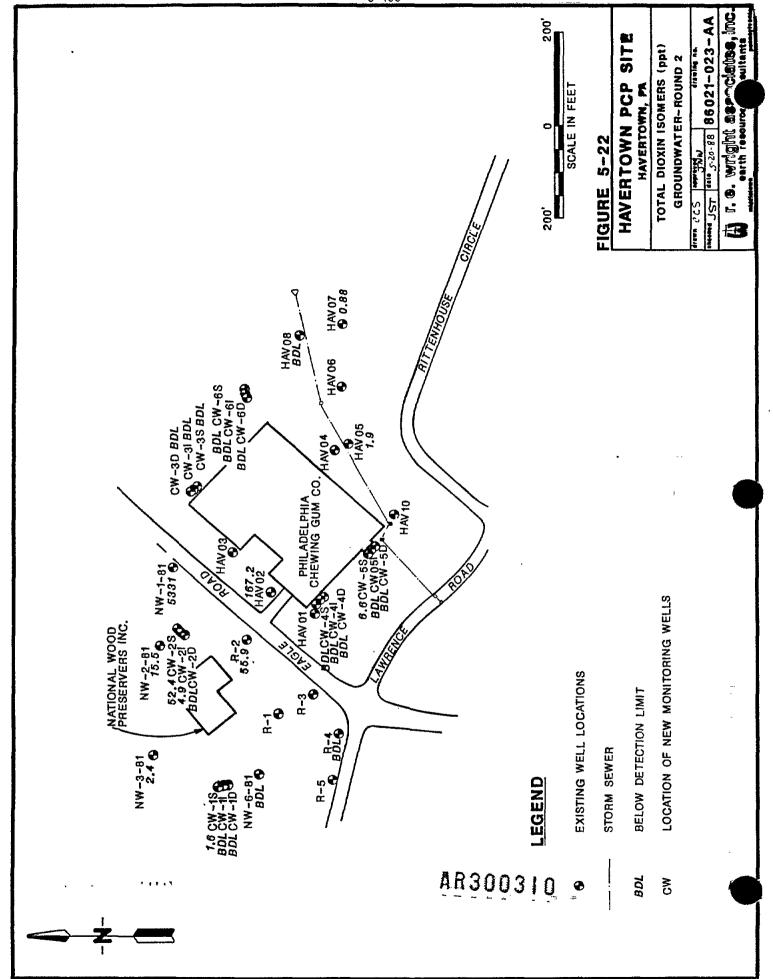
Ground Water Round 2 Dibenzofuran Results

SITE	86021	86021	86021	86021	86021	86021	86021	
POINT:	-S-15	C#-2-0	S-9-83	1-9-83	Q-9-N3	HAW-2	HAV-5	
TVB 10 1:	184040	184042	184716	184713	184235	184241	184242	
6C/HS DATE:	88-80-₹	88-80- >	88-CI-+	4-13-88	88-60-7	28-S-	第-60-7	
#E: 11#E:	15:53	17:11	19:54	17:28	05:01	13:22	00:71	
: 1 83	7==	1141-6	1163-2	1163-1	1-1911	5-1911	9-1911	
COP MANE							1	
TCOF	0.1	0,077	0.12	0.15	9.1	2.0	0.17	
2378 TCDF	0.12	0.079	0.21	0.15	0.15	0.21	0.16	
PecDF	9.18	0.15	9:16	0.22	6.3	0.35	0.28	
12378 PeCDF	9.18	0.15	9.19	0.22	6.3	0	0.33	
23478 PeCDF	804. 0.18 ppt	BOL 0.15 ppt	80t. 0.16 ppt	BOL 0.22 ppt	80L 0.33 ppt	80t 0.4 ppt	BOL 0.32 ppt	
HACOF	0.21	6.9	0.2	0.21	0.4		0.32	
123478 HxCDF	0.21	9.19	9.2	0.21	0.0	0.5	0.3	
23678 HxCDF	0.2	0.19	0.2	0.21	0.47	0.5	0.31	
124678 HxCDF	0.21	9:19	0.2	0.21	0.47	0.5	0.31	
123789 H1COF	0.21	9.3	0,2	0.21	0.4	0.5	0.31	
HpcOf	9.6	9.4	6.3	0.45	~:		0.65	
234678 HpCDF	9.64	9.4	6.3	0.45	~:		0.72	
	3.0	<u>.</u>	0.39	0.45	~:	Ξ	0.7	
900	99.0	9.5	9.5	0.62	7.7		0.7	

r.e. wrightas Doiates, inc.

Table 5-24 (Cont'd)

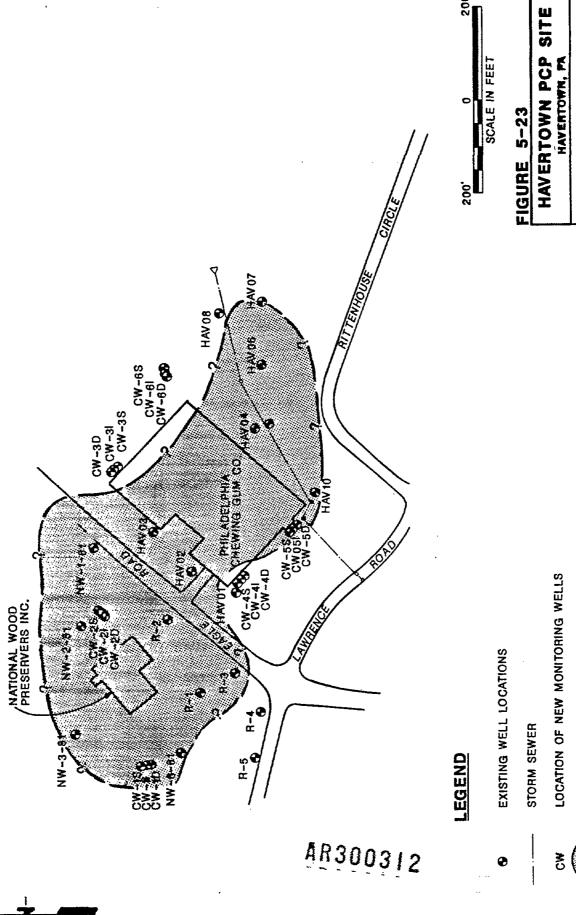
Ground Water Round 2 Dibenzofuran Results


##021 14-6 165399 4-14-69 20:22 1179-3	0.4	6.69 6.69 6.69 6.69	801. 0.68 ppt 801. 0.68 ppt 801. 0.68 ppt 801. 0.68 ppt	e.e.e.
8-6021 NW-3 105378 4-14-68 19:44 1179-2	8. 8. 8. 8.	S	801. 0.53 ppt 801. 0.53 ppt 801. 0.53 ppt 801. 0.53 ppt	6.77
B6021 NM-2 185397 4-14-89 19:04 1179-1	8,8		80t 0.45 ppt 80t 0.45 ppt 80t 0.45 ppt 60t 0.45 ppt	e. e.
64021 MW-1(00P) 1947190x 4-15-88 12:19 1143-48X	12.3 12.6	= :2	801. 25.6 ppt 801. 25.6 ppt 801. 25.6 ppt 801. 25.6 ppt	\$
84021 MI-1 1847174 4-15-88 11:38 11:38	12.1	4.6 6.6 7.7	801, 17.7 ppt 801, 17.7 ppt 801, 17.7 ppt 801, 19.6 ppt	<i>3</i> 1
66021 FAV-8 18404 4-08-88 18:30 1141-8	9.1	2222	80t. 0.25 ppt 80t. 0.25 ppt 80t. 0.25 ppt 80t. 0.25 ppt	8. 9. 9. 8. 8. 9. 9.
64021 HAV-7 184043 4-69-68 17:52 1111-7	0.082	3.5.5.5	801 6.18 ppt 804. 0.18 ppt 801. 0.18 ppt 801. 0.18 ppt	0.058 0.058 0.058
SITE: POHAT: 1.48 ID 8: 6C/HS DATE: 6C/HS THE: CW 1:		PECOF 12379 PECOF 23478 PECOF H1COF	123478 H1CDF 123478 H1CDF 124678 H1CDF 123789 H1CDF	HPCDF 1234678 HPCDF 1234789 HPCDF

r.e. wright associates, inc.

Table 5-24 (Cont'd)

Ground Water Round 2 Dibenzofuran: Results


B6021 R-4	185709	8-1-7	21:38	1185-2	0.38	0.36	0.43	0.43	0.43	0.48	0.48	0.48	0.48	0.49	95.0	35.0	80. 0.56 ppt	0.97
86021 R-2	185706	4-11-88	50:28	1185-1	0.53	0.75	0.75	0.75	0.75	0.83	0.83	0.83	0.83	0.83			80t. 1.2 ppt	
SITE: POINT:	148 TO 8:	GC/NS DATE:	6C/ffS 11底:	=======================================	•••	-	<u>.</u>	.		<u>.</u>	'	-	<u>.</u>	•		<u>.</u>	4	<u>.</u>
					8	2378 100	_	_	23478 PeCD		123478 HxCD		_	_		_	1234789 HpCDF	

groundwater derived from wells with contaminated oil in them do not necessarily have the highest dissolved dioxin concentrations.

Dioxin data from the newly installed monitoring wells indicated that dioxin was not detected in the bedrock wells at these Based upon the data at this time, the dioxin locations. contamination appears to be present only in the shallow and some intermediate-depth cluster wells, which are geologically situated in the saprolite units. From this sampling round (round #2) and the preliminary sampling round (round #1) data, an estimation of the groundwater contaminated by dioxin has been made. The shaded area of Figure 5-23 represents the estimated shallow groundwater area affected by contamination from dioxin. Note that the contamination appears to extend beyond the present monitoring For example, relatively elevated quantities of dioxin exist in the groundwater at NW-1-81. Additionally, wells HAV-05, HAV-07, and HAV-10 indicate that dioxin contamination in the groundwater extends downgradient of the storm sewer and past the present monitoring well network.

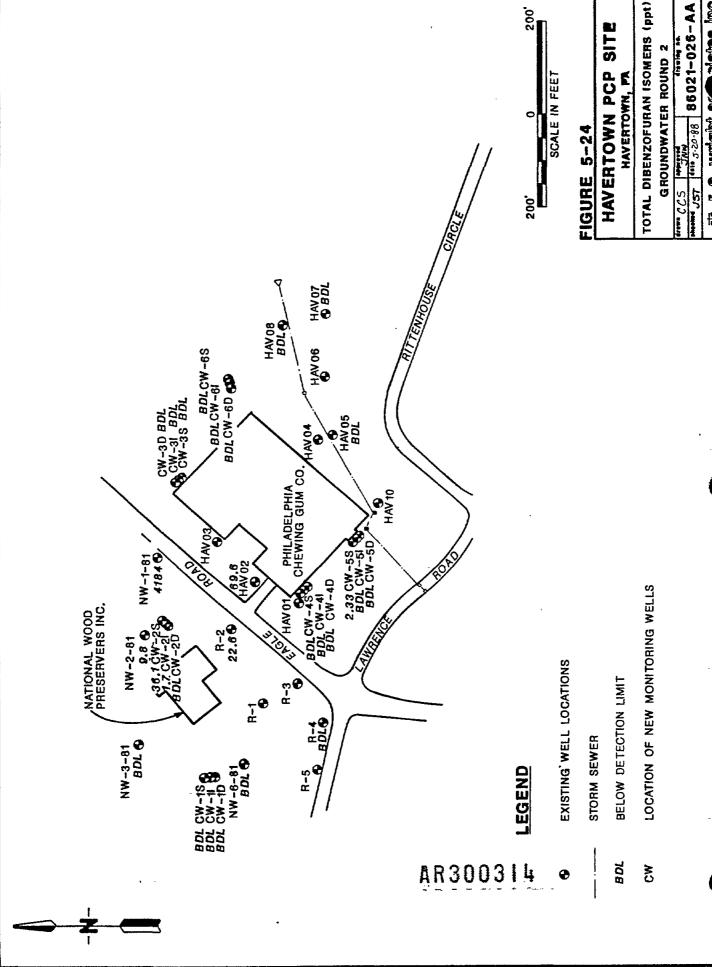
It was originally believed that the presence of dioxin in the groundwater samples was the result of dioxin adhering to fine sediments in the water samples which were analyzed. As dioxin has a very low solubility, this would seem to account for its presence in the water. However, this does not appear to be the case as no correlation between dioxin concentration and observed turbidity could be found. Therefore, the dioxin detected by the analysis appears to be the result of small amounts of dissolved oil which may be present in the water samples, which went undetected because of the detection levels of the other analytes.

ESTIMATED DIOXIN CONTAMINATION IN GROUNDWATER

ESTIMATED AREA OF DIOXIN CONTAMINATION

AND 5-20-89 86021-025-AA MNIC

Dibenzofuran isomers were identified in the groundwater samples from round #2 and consisted primarily of octa-, hepta-, and some amounts of hexa-chlorinated dibenzofurans. Figure 5-24 depicts the distribution of total dibenzofuran isomers in the groundwater Levels of total dibenzofuran were samples from round #2. elevated in wells R-2 and HAV-02 (22.6 and 69.6 respectively), with a significant level of dibenzofuran present in NW-1-81 (4184 ppt). This pattern is similar to the total dioxin concentrations discussed previously. Small amounts of dibenzofuran were identified in NW-2-81 (9.8 ppt) and in CW-5S With the exception of one location, NW-1-81, and possibly at HAV-10 (not sampled), it would appear that the presence of dibenzofuran is within the confines of the present monitoring well network. Although not certain, it would appear that the dibenzofurans are present in the saprolite units as are the dioxins. The presence of dioxin and dibenzofuran isomers was not identified in known bedrock monitoring wells.


No correlation appears to exist between the presence of oil in a well and high dibenzofuran levels. Likewise, no correlation exists between observed turbidity and dibenzofuran contamination.

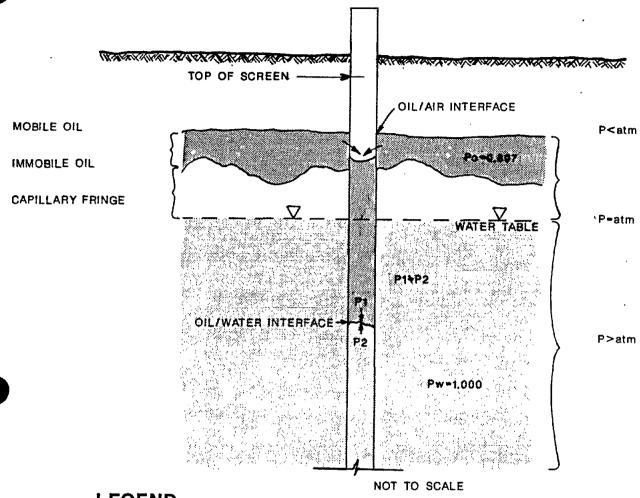
5.3.6 Affected Area

5.3.6.1 <u>Immiscible Hydrocarbon Plume</u> - Beginning as early as 1953 with the initial reports of pollution in Naylors Run, the focus of contamination at the Havertown PCP site has been on a subsurface oil plume. Using measurements of oil thicknesses in their wells, previous investigators constructed an oil thickness map for the Havertown PCP site. The oil plume was identified as having an elliptical shape whose major axis was parallel to the easterly groundwater flow direction. By estimating appoxisity,

defet, inc.

F. C. wringing as

(15 to 25 percent) and calculating an approximate area (4.5 acres), the volume of oil in the subsurface was projected to range between 350,000 to 600,000 gallons.


Since these initial investigations at the Havertown PCP site, new methods of using oil thickness measurements in monitoring wells to estimate the quantity of oil on the water table surface have been developed. According to Blake and Hall (1984), the thickness of oil which is measured in a monitoring well does not represent the amount of oil present in the surrounding aquifer. Rather, the measured oil thickness in the monitoring well will be substantially greater than the actual oil thickness in the formation.

In unconsolidated water table aquifers, the well thickness error can be explained by the method of oil migration in the aquifer. Because of the difference in the specific gravities and the interfacial forces between the two immiscible fluids (oil and water), the oil will eventually position itself along the upper contact of the capillary fringe. When a monitoring well enters the groundwater table, the capillary fringe, formed by the molecular attraction between soil particles and water, is removed. The water surface which then forms, and is measured, in a monitoring well is the level in the soil where the water (fluid) pressure equals atmospheric pressure (i.e. the water table). Therefore, when the oil positions itself on top of the capillary fringe, it attains a more elevated position in the formation, with respect to the water level in the monitoring well and will enter the well until the thickness of oil in the well creates pressure great enough to overcome the entry pressure of the oil. In addition, the oil will depress the water surface in AR300315

the well until the buoyant force counters the weight of the hydrocarbon, as shown by Figure 5-25.

Based on experiments by Blake and Hall (1984), an estimate of the true oil thickness on the aquifer may be obtained by measuring the apparent thickness of oil in the well (AT) and subtracting from it the calculated thickness of oil in the well below the water table and the height of the capillary fringe.

This procedure was used to estimate the oil thickness on the aguifer in the vicinity of monitoring well R-2. From REWAI's water and oil level measurements taken on March 17, 1988, the elevations for the oil/air interface and the oil/water interface were determined. Using the specific gravity of the oil, the corrected water table elevation was calculated as described in Section 5.3.4.4.1. Referring to Figure 5-26, the apparent thickness of oil in the well (AT) was calculated by determining the difference between the elevations of the oil/air interface and the oil/water interface (4.1 feet). The thickness of oil below the corrected water table (Twt) was then determined (3.68 feet) and subtracted from the AT yielding the thickness of the capillary fringe plus the mobile and immobile oil (0.42 feet). In order to provide an estimate of the oil thickness present on the aquifer in the vicinity of R-2, a capillary fringe thickness was estimated based on fine sand soil texture from Fetter, 1980 (0.25 feet). Subtracting the estimated capillary fringe height (0.25 feet) from the capillary fringe plus the mobile and immobile oil thickness (0.42 feet) yields an estimate of the oil present on the aguifer at R-2 of 0.17 feet or 2 inches. It must be stressed that this result is only an

LEGEND

P	PRESSURE,	GREATER.	EQUAL TO.
	OR LESS TH	AN ATMOS	PHERIC

Po FLUID DENSITY, OIL

PW FLUID DENSITY, WATER

P1 FLUID PRESSURE OF OIL

(AFTER BLAKE AND HALL, 1984)

P2 FLUID PRESSURE OF WATER

P14P2 FLUID PRESSURE EQUILIBRIUM

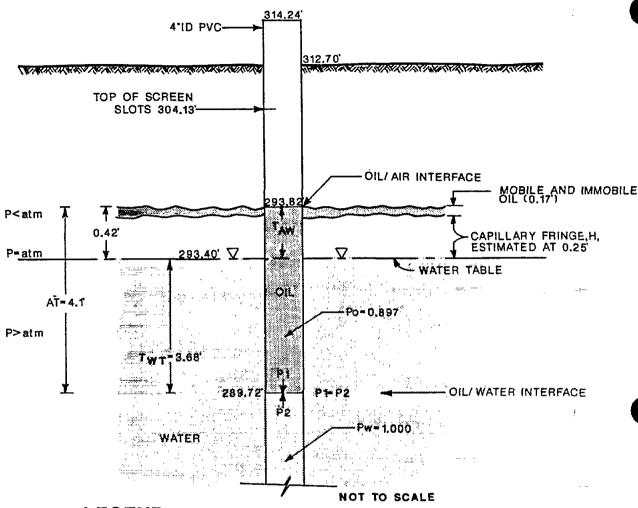
NOT ESTABLISHED

WATER TABLE

AR300317

FIGURE 5-25

HAVERTOWN PCP SITE


OIL MOVEMENT INTO

MONITORING WELL

drawing no. d

MONITORING WELL R-2

LEGEND

APPARENT OIL THICKNESS IN MONITORING WELL (FEET) AT

ATMOSPHERIC atm

HEIGHT OF CAPILLARY FRINGE (FEET) ESTIMATED BASED ON SOIL TEXTURE (FETTER, 1980) Н

THICKNESS OF OIL BELOW WATER TABLE TWT

THICKNESS OF OIL ABOVE WATER TABLE TAW

(AFTER BLAKE AND HALL, 1984)

Po FLUID DENSITY, OIL

Pw FLUID DENSITY, WATER '

P1 PRESSURE, OIL

Pa

PRESSURE, WATER

Patm PRESSURE, ATMOSPHERIC FIGURE 5-26

AR30031

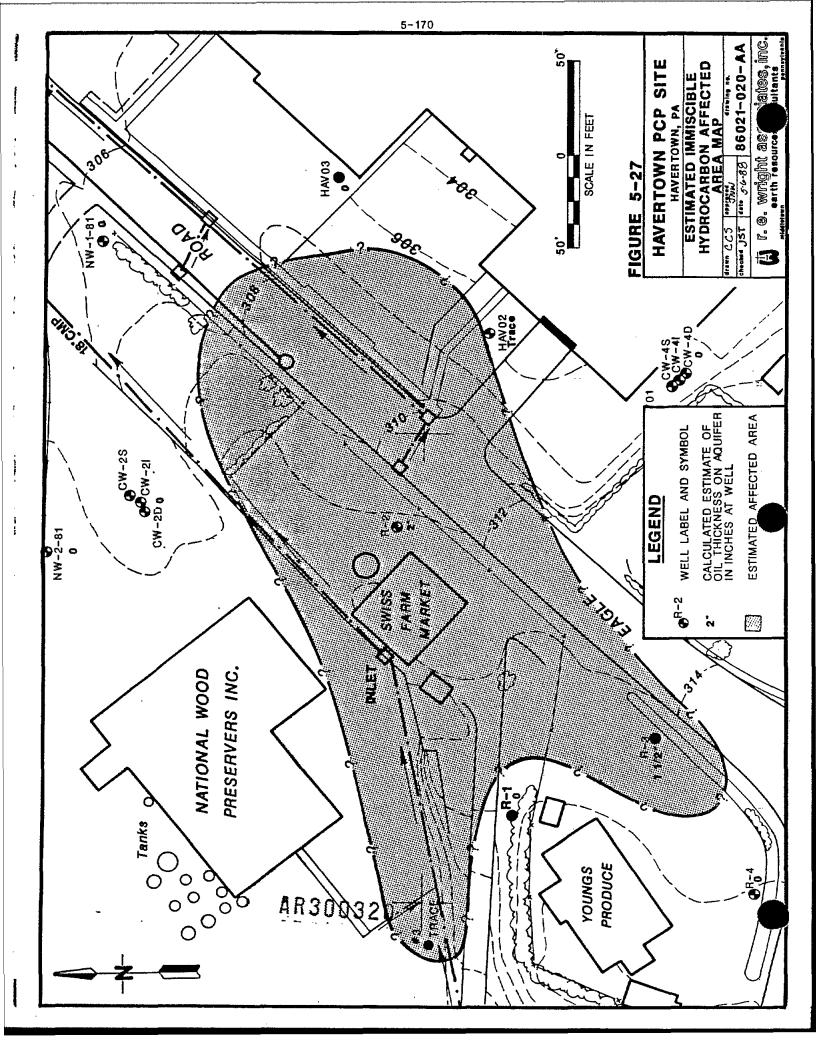
HAVERTOWN PCP SITE

HAVERTOWN, PA.

ESTIMATED OIL THICKNES CALCULATION (3/17/88 DATA)

drawn ABS PPPreyed checked JST 4115-4-88

drawing no 86021-018-AA


r. e. wright associates, inc earth resources consultants

approximation. Without knowing the height of the capillary fringe, a refined estimate of oil thickness cannot be made.

It is important to note that the measured thickness of oil in a well at the Havertown PCP site does not in itself reflect the extent of oil contamination on the water table. Therefore, by correcting for the actual thickness of oil in the aquifer, it is clear that the potential for free-floating immiscible oil which may be present in the subsurface is significantly less than the 350,000- to 600,000-gallon estimate from previous investigations.

To demonstrate this, the amount of free-floating immiscible oil has been estimated using Figure 5-27, which is a plot of the estimated boundary of the immiscible hydrocarbon plume and calculated aquifer oil thicknesses at spot locations. affected area in this figure has been estimated to be approximately 45,000 square feet, or about 1.03 acres. average oil thickness of 0.083 feet (1 inch) is assumed to be present over the affected area, and an estimated porosity of 21 percent, previously presented in Table 5-12, the estimated amount of free-floating immiscible oil would be approximately Because the highly irregular capillary fringe 6,000 gallons. would tend to alter the thickness of the oil plume significantly, making an "average" value difficult to arrive at, the reliability of the 6,000-gallon estimate is undetermined. However, this assessment clearly indicates that substantially less free-floating immiscible oil is present at Havertown than previously believed.

As no determination of the amount of oil which has adhered to the soil grains within the zone of water table fluctuation has been made, no estimate of the oil immobilized in this area fall being

made. The amount could be considerable based upon past REWAI experience and should be addressed during site remediation planning.

5.3.6.2 <u>Dissolved Hydrocarbon Plume</u> - As described in Section 5.3.5, water-soluble chemical contaminants have been identified in the groundwater at the Havertown PCP site. The contaminants apparently originate from sources of gasoline/fuel oil and solvents/degreasers.

A review of the gasoline/fuel oil component concentrations in the groundwater indicates that the most probable contaminant source is from the subsurface waste fuel oil residing on the surface of the water table. Since the fuel oil was originally used at NWP prior to its disposal, the presence of pentachlorophenol (PCP) in the oil, as a preservative, would allow it to be used to trace the extent of groundwater contamination from dissolved chemicals. The use of PCP as a positive indicator of the dissolved contaminant plume, however, would yield a conservative depiction of the affected area because of, among others, the relatively low solubility of PCP in water (14 mg/l) and the relatively high PCP detection limit (50 ug/l), compared to other compounds reported.

Figure 5-28 depicts the dissolved PCP concentration in the groundwater in the saprolite units. As shown by the figure, 500 and 2000 ug/l PCP concentration lines were drawn to provide a rough approximation of the shape of the dissolved plume. It appears that the higher concentrations of dissolved PCP in the saprolite units occur between the NWP and PCG buildings and that the concentration of this species apparently rapidly decreases laterally with distance from this area. It is important to note that the reported concentration of PCP at well R-24 R60 up 12 was

diluted 80 times and analyzed 37 days after extraction, which is within the EPA requirement of 40 days for analysis. Smaller dilutions, completed earlier, reported substantially higher PCP concentrations—namely, 5800+, 3400+, and 2700+ ug/l. Because of the high concentrations of PCP found, the interference of other chemicals, the number of dilutions required, and the instability of PCP, it is believed that this reported number (860 ug/l) is understated and not representative of the PCP concentration in the groundwater at R-2, even though proper QA/QC procedures had been used. Consequently, the 2,000 ug/l PCP isocon enshrouds well R-2.

It is apparent that dissolved PCP extends beyond the present monitoring well network, as evidenced at monitoring well HAV-05. The shape of the dissolved plume, as indicated by PCP, is elongated in the direction of groundwater flow, east-southeast. In addition, highest groundwater concentrations of dissolved PCP appear to be related to the location of the subsurface fuel oil plume, as shown previously in Figure 5-27.

A similar dissolved PCP map was produced for groundwater in the bedrock. As shown by Figure 5-29, the six CW-series bedrock monitoring wells indicate that dissolved PCP levels are significantly elevated at the NWP and PCG sites. Because of the limited number of data points, no approximation of the extent of the dissolved PCP plume in bedrock was made by contouring. However, it appears that the PCP dissolved in the bedrock groundwater also extends beyond the present monitoring well network, as evidenced by well CW-6D, the furthest downgradient deep monitoring well.

Chemical contaminants associated with solvents and degreasers were also identified in the groundwater. These chemicals are not constituents of fuel oil, nor were they reported in use in any past or present wood-treating operation at NWP. To assess the distribution of solvent constituents in the groundwater at the site, the chemical trichloroethene (TCE) was chosen as an indicator species because of its frequency of occurrence in the groundwater chemical results. The presence of solvents in the saprolite units was assessed by plotting the reported concentrations of TCE next to their appropriate well locations, as shown by Figure 5-30. From this plot, it is apparent that solvent constituents, as represented by TCE, are present throughout the area of investigation and apparently extend beyond the present monitoring well network. The highest concentrations appear to be located in the vicinity of one of the more upgradient wells, CW-1 series. As the general groundwater flow direction is toward the east-southeast, it appears that little, if any, solvent constituents are entering the site from the north, as illustrated by Figure 5-30. To refine estimates of source areas for the solvent and degreaser constituents identified in the groundwater of the saprolite units would require additional investigation. However, it appears that one or more source areas for solvent and degreaser constituents may exist west (upgradient) of the study area.

The distribution of solvents and degreasers, as represented by TCE, was also assessed for groundwater in the bedrock. Figure 5-31 depicts the concentrations of TCE in the bedrock monitoring wells at the site and is similar to the previously presented saprolite unit figure. The highest TCE levels were identified at CW-1, which implies a source located further upgradient from the study area. Figure 5-31 also shows that 5

solvent and degreaser constituents are present beyond the present monitoring well network, as evidenced by CW-6D, which is the most downgradient deep monitoring well. In general, the groundwater in the bedrock at the study area contains elevated quantities of solvent/degreaser components.

5.3.6.3 <u>Summary of Findings</u> - Based upon the groundwater chemical results and the measurement and calculation of oil thickness at the Havertown PCP site, two areas of groundwater contamination were identified.

First, the existence of the subsurface floating oil plume was verified as being present beneath the site. Using fluid levels measured on April 11, 1988, calculations were performed to establish that the thickness of oil on the water table surface should be substantially less than the oil thicknesses measured in the monitoring wells. Accordingly, the volume of potentially recoverable floating oil is much less than previous investigators' estimates. A map of the estimated area affected by the floating immiscible oil has been produced, which based upon available data, indicates that the floating oil is present between NWP and PCG buildings.

Second, chemical results indicate that dissolved metals, hydrocarbons, pesticides, and isomers of dioxin and dibenzofuran exist in the groundwater at the site. Dissolved metals which were found in relatively high concentrations consisted primarily of copper, sodium, magnesium, iron, manganese, and potassium, while lower amounts of chromium, cadmium, lead, and zinc were also reported.

VOAs consisting primarily of benzene, ethylbenzene, 1,1,1-trichloroethane, vinyl chloride, xylene, and total 1,2-dichloroethane were identified in the groundwater, along with lower concentrations of 1,2-dichloroethane, methylene chloride, toluene, 1,1,2-trichloroethane, acetone, and 1,1-dichloroethene. VOAs generally increased in concentration with depth at the CW-1, CW-5, and CW-6 series monitoring wells, while decreasing in concentration with depth at the CW-2 series wells. In addition, there was no apparent correlation between the presence of oil in the monitoring wells and increased VOA concentrations in groundwater. In addition, VOAs have migrated past the present monitoring well network.

Relatively few species of BNAs were found in the groundwater; however, the concentrations of those BNAs that were present indicate that the groundwater is substantially contaminated, with bedrock being nearly as contaminated as the saprolite. The identified BNAs overwhelmingly consisted of PCP, with lower amounts of naphthalene, 2-methylnaphthalene, phenanthrene, and approximately 15 other BNA compounds. BNA contamination apparently extends beyond the present monitoring well network.

Pesticides were found in three monitoring wells--NW-3-81, R-4, and CW-2D--consisting of delta-BHC, gamma-BHC, and/or dieldrin. There were no PCBs found above detection limits in the groundwater samples.

Oil and grease was detected in 12 of the 28 wells sampled, and results indicate a minor trend of increasing oil and grease concentrations in the bedrock, while decreasing in concentration in

the saprolite as one moves downgradient with the flow of groundwater.

Primary dioxin isomers found include hepta-, 1234678-hepta-, and octa-dibenzo-p-dioxins, with the highest total dioxin concentration occurring in well NW-1-81. It was also determined that wells with oil in them did not necessarily have the greatest dioxin concentrations and that dioxin was not identified in any of the known bedrock monitoring wells. The distribution of dioxin in the monitoring wells indicates that dioxin has migrated beyond the present monitoring well network.

Dibenzofuran isomers such as hepta-, octa-, and some hexa-chlorinated dibenzofurans were identified in the groundwater, with the greatest concentrations also found in well NW-1-81. There appears to be no correlation between the presence of oil in the monitoring wells and the respective dibenzofuran concentration.

As dissolved PCP was detected in the groundwater in significant amounts, an affected area map has been produced using PCP as a tracer for the dissolved contaminant plume originating from NWP. The plume delineated by the PCP should be considered a conservative estimate of the entire plume, as other contaminants, such as VOAs, are more hydrophilic than PCP and, with their lower analyte detection levels, may enlarge the dimensions of the dissolved plume.

Apparently, both the saprolite and the bedrock units contain significantly elevated quantities of dissolved gasoline/fuel oil constituents in the groundwater. In addition, solvents and degreasers, which are not constituents of fuel oil were also AR300330

detected in the groundwater at the site. Their existence indicates that other contaminant sources exist in addition to the subsurface fuel oil. Such sources may include the nearby automotive repair and service stations which probably use or formerly used solvents and degreasers such as those identified in the groundwater. Both the saprolite and bedrock units are affected by the presence of elevated levels of solvent and degreaser constituents.

From the data generated by this investigation, it is clear that a substantial quantity of PCP-contaminated fuel oil is present on the water table; however, because of monitoring well spacing and slow oil migration rates, the actual extent of the oil plume is uncertain. In addition, a substantial dissolved groundwater contamination plume has been shown to exist and extend past the present monitoring well network.

6.0 SURFACE WATER INVESTIGATION

6.0 SURFACE WATER INVESTIGATION

6.1 Surface Water Drainage

The Havertown PCP site is drained by Naylors Run which is a tributary to the Delaware River. Naylors Run flows in a southeasterly direction from the site through sections of natural streambed, concrete-lined man-made channels, and various drainage pipes before entering Cobbs Creek near Lansdowne, Pennsylvania, approximately four miles southeast of the site. Cobbs Creek empties into Darby Creek which flows through the Tinicium Wildlife Preserve before entering the Delaware River.

The drainage area of concern consists of the properties of NWP, PCG, and the residential homes along Rittenhouse Circle. Surface water from these areas enters Naylors Run through a system of natural and artificial routes.

Surface drainage from NWP flows predominantly in a northeasterly direction and is assisted by an 18-inch corrugated metal, storm sewer pipe which borders the eastern and southeastern side of the NWP property. Water enters the storm sewer pipe at inlets located near the pedestrian gate in the vicinity of Continental Motors and behind the Swiss Farm Market.

A significant amount of water has been observed to collect on numerous depressions across the NWP property, especially in the area of the main gate near Eagle Road. There, the surface water subsequently evaporates or percolates into the ground. When precipitation is significant, it was observed that a substantial amount of overland flow occurs, most of which exists on the property through the NWP main gate. This water, along with the

water from the storm sewer, flows into a drainage ditch north of NWP which runs parallel to the abandoned railroad bed.

This drainage ditch routes water under Eagle Road and PCG's parking lot through a 24-inch, corrugated metal pipe (CMP). This pipe receives drainage from three inlets located in the PCG parking lot and joins with a 48-inch pipe carrying water from Naylors Run above the headwall of the abandoned railroad bed just north of the PCG property. This water then travels through a 60-inch CMP before emptying into Naylors Run.

A 36-inch CMP runs from Lawrence Road, behind PCG, in a northeasterly direction before emptying into Naylors Run. This pipe handles surface drainage from Lawrence Road, as well as picking up drainage from two inlets located at the southwest corner of the PCG building.

Drainage from Rittenhouse Circle occurs primarily as overland flow across the grass areas, road, sidewalks, and macadam driveways. This water is caught by storm sewers and transported to Naylors Run. Runoff from the grassy areas either percolates into the ground, evaporates, moves by overland flow to Naylors run, or is removed by subsurface drainage tiles installed by some Rittenhouse Circle residents to control the high water table. Drainage in the backyards of the homes bordering Naylors Run is poor as evident by the soft and wet ground surface, which predominates during a majority of the year.

Plate 1, the site base map, depicts the storm water and sanitary sewer system which were preliminarily investigated by REWAI

during the RI. No information is available at this time concerning the subsurface drainage tiles installed by some Rittenhouse Circle residents.

6.2 Surface Water Sampling of Naylors Run

Surface water sampling was included as part of the RI at the Havertown PCP site. The purpose of the surface water sampling was to assess the extent of contamination in the water of Naylors Run as a result of groundwater influent and surface water runoff. Surface water sampling was conducted on July 24, 1987. Ten surface water locations were sampled, and in addition, a duplicate sample was taken at surface water location 9 (SW-9) for QA/QC procedures.

6.2.1 Sampling Procedures and Locations

The surface water sampling began with the downstream sampling locations and continued progressively upstream to avoid stirring up sediments and consequently degrading the quality of the samples. Each sampling location was marked with a wooden stake on the stream bank and flagged. A description of the location was recorded in the field notes and the position plotted on the project base map.

Samples were collected in an area of the stream where there was a steady but nonturbulent flow of water, by immersing a sample container and filling it without disturbing any sediments. An OVA meter was used throughout the sampling to monitor for organic vapors emanating from the samples, as well as in the working zone

of the samplers. The results of these readings were included in the field notes.

6.2.2 Field Measurement of Chemical Parameters

Field parameters were taken at each surface water sampling location and are included herein as Table 6-1. These parameters included dissolved oxygen, pH, specific conductance, and temperature. Field pH measurements were made utilizing a battery-operated pH meter with a two-buffer (4.0 and 7.0) calibration. Specific conductance was measured using a Yellow Springs Instrument (YSI) Model 33 SCT meter calibrated with a standard solution at 25°C. The immersion thermometer on the SCT meter was used for making water temperature measurements to correct measured specific conductance measurements to their equivalents at 25°C. This was completed by utilizing the formula:

$$L_R = L_T/[1 + 0.019 (T - R)]$$

where:

 $L_R = \text{conductivity at 25}^{\circ}\text{C}$ (reference temperature)

L_T = conductivity at sampled temperature

R = reference temperature

T = sample temperature

(Dackombe and Gardiner, 1983, p. 154)

Dissolved oxygen was measured utilizing a YSI Model 51 D.O.-meter. This instrument provides measurement of dissolved AR300336

Table 6-1
Surface Water Parameters

Location	Dissolved Oxygen (mg/l)	<u>H</u> q	Specific Conductance (umhos/cm [25°C])	Temperature O(C)
sW-1	5.1	6.53	431	25
SW-2	5.5	6.45	437	25
sw-3	5.5	6.30	433	25.5
SW-4	5.85	6.40	440	26
SW-5	3.7	6.10	583	22
SW-6	6.6	6.98	431	33
sw-7	7.05	6.70	432	32
SW-8	6.9	7.30	418	33.5
SW-9	7.5	7.2	428	32
SW-10	6.6	6.80	445	28

oxygen calibrated to the oxygen in the air with regards to barometric pressure and elevation.

It is apparent from the field-measured surface water parameters that location SW-5 (storm sewer outlet) was unique among the surface water sampling locations. SW-5 had the lowest dissolved oxygen (3.7 mg/l) and pH (6.10) of the samples of surface water tested. In addition, SW-5 also had the highest specific conductance (583 umhos/cm @ 25°C) of the surface water samples. The storm sewer pipe (SW-5) apparently influences the quality of the surface water in Naylors Run by providing effluent waters which at least affect the surface water parameters tested here.

6.2.3 Chemical Results

Samples were collected and analyzed for the Hazardous Substance List (HSL) parameters, oil and grease, and dioxin and dibenzofuran. Results of these analyses are also included in Appendix 2.

Several HSL metals were detected in the water chemistry results included as Table 6-2 from surface water samples SW-1 to SW-10. Heavy metals such as cobalt, copper, lead, silver, and thallium were detected in samples at lower concentrations than zinc, calcium, sodium, potassium, and iron. The presence of metals such as zinc and copper may be associated with NWP due to the fact that these metals are used in the wood treatment process at the site. The detection of lead could be due in part to gasoline components being washed off of parking lots, road surfaces, and/or from automotive service stations in the area. Metals which were detected at higher concentrations, such as calcium,

r.e. wright as sociates, inc.

Table 6-2

:

Surface Water Metals Results

54 EU/L 54 EU/L 54 EU/L 34 EU/L 37 34 EU/L 37 Be/L 36 Be/L 37 Be/L 37 Be/L 37 Be/L 37 Be/L 37 Be/L 36 Be/L 37 Be/L 37 Be/L 37 Be/L 37 Be/L 37 Be/L	POINT SLIKE WAT SLAWPLE	##1 ##1 ##1 ##1 ##1 ##1 ##1 ##1 ##1 ##1	Sue with the state of the state	50 UGA 1.3 UGA 1.0 UGA 1.0 UGA 1.0 UGA 1.0 UGA 3.2 UGA 7.5 UGA 7.5 UGA 1.0 UGA 1.0 UGA 1.0 UGA 1.0 UGA 1.0 UGA	143025 18-3 143025 1804 804 804 804 804 804 804 804 804 804	50 U6/L 2.3 U6/L 1 U6/L 10 U6/L 10 U6/L 10 U6/L 32 U6/L F U6/L 7.5 U6/L F U6/L F U6/L	143026 143026 143026 113026 113026 113026 1001 100 1001 1002 1003 1003 1003 1003	\$6 06/H 2.3 06/H 1 06/H 10 06/H	143027 143027	50 UGA 2.3 UGA 1 UGA 4 UGA 10 UGA	1430.28 1430.28 1430.28 1430.28 1430.28 151 151 151 151 151 151 151 151 151 15	50 1671, 2.3 1671, 1 1067, 1 1067, 10 167, 11 5 167, 11.5 167, 11.5 167, 11.5 167, 11.5 167, 11.5 167, 11.5 167, 11.5 167, 11.5 167, 11.5 167,	SH-7 07/24/87 0 0 0 0 0 143029 1133029 1133029 1133029 1133029 1133029 113402 11340	50 JG/L 2.3 UG/L 1 UG/L 10 UG/L 10 UG/L 10 UG/L 11.4 UG/L 1.4 UG/L 1.4 UG/L 1.4 UG/L
U6/1 2560 U6/1 2720 U6/1 2710 U6/1 13100 U6/1 37 U6/1 1400 U6/1 13100 U6/1 37 U6/1 4 U6/1 9.6			# 35 <u>5</u>	790 J	8 2 8	E 86.7	<u> </u>	7 7 5 E 06/1	\$ Z \$	7 7 5 1 6 1 7 5 1	2 7 5	1967 E 1967	₹ ₹ 5	793 1987 1983
57 USAT			2560 2560 2560	790 790 790	2820	799 799	2710 2720	798 198	00151 00691	7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$ \$	167. 167.	£ €	79 79 79 79
UG/L 15 UG/L 16 UG/L 17 UG/L 79 UG/L 60L 5 UG/L 5.2 E UG/L 12100 E UG/L 12000 E UG/L 16500 E UG/L 11600 E UG/L <td></td> <td></td> <td>2.2 88 2.2</td> <td>1/90 27 UG/L</td> <td>2. 8</td> <td>1/9N 27 ¥6/L</td> <td>æ æ</td> <td>7/98 23 RE/1</td> <td>* =</td> <td>7/98 1/98</td> <td>ਿ ਛੱ</td> <td>790 /S</td> <td>\$ \$ \$</td> <td>25 NE/L</td>			2.2 88 2.2	1/90 27 UG/L	2. 8	1/9N 27 ¥6/L	æ æ	7/98 23 RE/1	* =	7/98 1/98	ਿ ਛੱ	790 /S	\$ \$ \$	25 NE/L
E US/1 12100 E US/1 12000 E US/1 12000 E US/1 16500 E US/1 11600 E US/1 11800 E US/1 11800 E US/1 31400 US/1 31400 US/1 31400 US/1 31400 US/1 31400 E US/1 31400	•		3 S	790 790	≤ ≃	790	=	7/9n	2		2	S U6/L	23	1/9 19
E 16/1, 29400 E 16/1, 28700 E 16/1, 29100 E 16/1, 30400 E 16/1, 30400	2		12100 35100	E 116/1. 116/1.	34400	도 1년 1년 1년 1년	34500	√93 39 31	31 6 00 31 6 00	도 등 등 등	969E	F 167	37.EB	796 188
	£.		29400	£ 16/1	28700	E 116/1	29100	E 116/1	37000	E USA	30400	1/9N 3	30460	E U6/L

r.e. wright associates, inc.

Table or (Cont'd) Surface Water Metals Results

																														•	
									z	2.3	_	~	2		<u>ب</u>	6.5	32 UG/L	7:5	•	=		لئبا				3		u		•••	
86021		₽- -	07/24/87	0	₹		143032	****	6	펄	ਛ	藍	Ē	2	~	룚	蓋	Ē	藍	룚	=	ੜ	25	æ	9.8	륦	6.2	<u> </u>	36200	29100	4760
									ZO 116/I	2.3 UGA	1/90 1	1/90 t	10 USA	1/91	# F 116/L).2 US/L	32 UG/L	1.5 86/L	9 tg/l	1/90	7/90 De/1	£ 116/1	1/90	1/9 0	1/90	57 UG/L	1/90	£ 1/9/1	1/90	E 116/L	N 8/L
86021			07/24/87	0	\$		143033	*****	줊	富	8	喜	藍	a	7:7	藍	意	<u>ਛ</u>	藍	8:	35	F	22	8	2	폺	5.5	900 =	32000	29800	5150
-									SO 66/L	2.3 66/L	1 06/1	¥ 66/1	19 0E/L	79N	11 F UG/L	0.2 US/L	32 UG/L	1.5 te/l	7/90 6	1.4 86/L	19N	E 116/1	1/90	1/9A	1/9N	S7 116/L	7 9 3	1/38) 3	7/9A	E 06/L	N6/L
12098	SCH EN	6-35	07/24/87	0	≨		143031																								
									7/98 <i>0</i> 5/	2,3 U6/L	1,64	1 /90 †	735 BE	1/9A	# F U6/L	0.2 UG/L	32 UE/L	1.5 66/1	T/90	1.4 05/1	1/91	£ 116/1	1/90	7/95	1/90	S7 UE/L	1/90	E 86/L	1/90	E 16/L	T/90
86021		₽	07/24/87	0	\$		143030	11	둞	ē	番	萬	臺	≈	_	蠹	爱	æ	о -	ž	8		=	*	9.5	룚	5.4	11300	35900	30100	1250
SITE	E '	SAMPLE	DA TE	DEPTH	MATRIX		METALS LAB 10 B	7																							
						CHPO CL CMPO-DESC			ANTINONY	ARSENIC	BERYLL JUM	CADMIUM	CHROMICA	COPPER	LEAD	MERCURY	HICKEL	SELENTUM	SILVER	THALL ISM	21K	BARIUM	IRON	MANGANESE	VANADIUM	ALUM I MUN	COBAL 1	MAGNES I UM	CALCIUM	SOUTUM	POTASSIUM
						CHPO CL			E 0	102 H	103 H	100	105 M	106	107 M	88	109 H	101	=	112 8	113 M	===	115#	¥ 9:1	117 H	H 811	150 H	121 H	# 621	130 H	131 #